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Abstract
In this paper we consider the boundary over distance preconditioner for radial basis
function interpolation problems. We give both theoretical and numerical results indicating
that it performs extremely well.

1 Introduction
Let p -: + 7, X = {Xl .... ,XN} be a set of N distinct points in 7Rd and f be a real
valued function which we can evaluate at least at the xi's. Define

S•,= { g: g=•-A'•N I~ ('-xi)N }oral . (1.1)
where •=I Ajq(xj) = 0, for all q E ird

We consider the problem of finding an element s of Sp,x + r+r satisfying the interpolation
conditions

s(xi) = f(xi), for all xi E X. (1.2)

Assume 4i is strictly conditionally positive definite of order 2 (SCPD2) and X is uni-
solvent for ?r d. Then there is a unique element of Sp,x + 7rd satisfying the interpola-
tion conditions (1.2). This setting includes popular choices of the basic function such
as the thin-plate spline, 4(.) = I. 12 logI- 1, and minus the ordinary multiquadric,
.() = - V/. 12+ c2 . In this paper we consider various ways of formulating the in-
terpolation problem, showing in particular that a certain inexpensive change of basis
can dramatically improve its conditioning.

The usual way to formulate this problem is in terms of the functions {1(. - xi)} and
some basis {Po,Pi,... ,PdlI for rd. Then the interpolation conditions together with the
side conditions taking away the extra degrees of freedom introduced by the polynomial
part can be written as

AA + Pc = f and PTA = 0, (1.3)

where Aij = 4(xi - xj), Pij = pj(xi), and f = [f(xi),... f(XN)]T. It is well known [3,
4, 5] that the matrix

pT 0
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of this usual formulation is frequently badly conditioned, even when the number of nodes
is small. Indeed many authors have commented on the numerical difficulties that solving
this system presents [3, 4, 5]. Results of Narcowich and Ward show that conditioning of
the system (1.4) depends very heavily on the geometry of the nodes. However, frequently
in numerical analysis a change of basis, or other reformulation, can make a highly in-
tractable problem tractable. Hence, our goal is to find an inexpensive but highly effective
preconditioner for RBF interpolation systems.

In this paper we establish properties of a preconditioning method for the RBF inter-
polation equations which was first presented in Sibson and Stone [5]. In the following
section we give a detailed account of the preconditioning method. In Section 3 we prove
that the construction produces an N x (N -3) matrix Q whose columns are orthogonal to
P, and which is of full rank whenever the nodes X are unisolvent for 7r2. Finally, Section

4 contains numerical results for different SCPD2 basic functions over a range of data
sets and scales. These numerical results show that using this inexpensive O(N log N)
flop preconditioner and variants of it, dramatically improves the conditioning of RBF
interpolation problems. See Figure 1 below.
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(a) Multiquadric basic function. (b) Thin-plate spline basic function.

Fic. 1. Sorted 2-norm condition numbers of the unpreconditioned matrices, A4', (top)
and of the preconditioned matrices, S, (bottom) for fifty thousand random data sets of
size one hundred.

2 A preconditioning method

A general approach to preconditioning interpolation problems with SCPD2 basic func-
tions in IZ2 [1, 5] is to choose Q as any N x (N -3) matrix whose columns are orthogonal
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to P and has rank N - 3. Letting A = Qp and premultiplying (1.3) by QT gives the new
system to be solved for p, or equivalently X,

Bp = QTf where B = QTAQ. (2.1)

The three polynomial coefficients can then be found by a small subsidiary calculation.
In this section we present the boundary over distance method of Sibson and Stone [5]

for constructing the matrix Q. We will prove in the subsequent section that Q has full
rank and is orthogonal to P for any set of distinct nodes X = X1,.... , xg} C TZ2,

which are unisolvent for irl2. These properties of Q are well known (see e.g. [1, 5]) to
imply that the matrix of the preconditioned system B = QTAQ is positive definite. The
construction of Q is appealing in that for "interior" points xj of X it is local. That is,
for such points the entries in the j-th column of Q depend only on the geometry of the
nodes near xj and not on any properties of nodes far away.

Choose a closed bounded convex polygonal region W of R2 such that X C W.
Suppose without loss of generality that {XN-2, XN-1, XN} is unisolvent for r2. We will

refer to these points as special points. They are generally chosen so that they are well
spread throughout W. In our experience, and that of Sibson and Stone, for typical data
sets the choice of special points is not at, all critical, as long as the triangle they define
has largish area. However, for contrived data sets, such as all but a very few points
on a straight line, the choice of special points becomes important. In these cases we
have observed that bad choices of special points can lead to large condition numbers.
However, the strategy of choosing the three special points to maximise the area of the
corresponding triangle has always led to small condition numbers.

The region W is divided into panels by intersecting a Voronoi diagram of the points
of X with the region W. We denote this panelling of W by

N

Vw(X) U=
i=1

where V1 is the Voronoi panel about the ith centre and is defined by

V={xEW: x-xil < Ix-xjl, for all 1 <j<Nwithj =i}.

Recall that the locus of points equidistant from two fixed points is the perpendicular
bisector of the segment connecting the points. It follows that each Voronoi region is
polygonal. Associated with a panel Vi are its edges. These are a finite number of dis-
tinct closed line segments of non-zero length. They are the boundaries between different
Voronoi panels, or between a Voronoi panel and WC. The collection of all edges of all
the Voronoi panels will be denoted by S.

Definition 2.1 Two polygonal regions of R?2 will be said to be strongly contiguous if
they have a common boundary of non-zero length.

Definition 2.2 Two Voronoi regions Vi and Vj will be said to be C-related if there is
a sequence

{Vi, VeI, VE2,... Vt- I Vj}, 1<-_i,j, j,..., fn<_g - 3,
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in which all adjacent pairs are strongly contiguous.

Loosely speaking Vi and Vj are C-related if they are connected by a chain of strongly
contiguous pairs. C-related is an equivalence relation on the set IN of Voronoi
regions of non-special points. Therefore it breaks this set into a finite number of nonempty
equivalence classes {f G 1 < 1 < k}.

Lemma 2.3 Let Gj be any of the equivalence classes above. Then there is at least one
Voronoi region Vi in gt which is strongly contiguous to either Wc or one of
{VN-2, VN-1, VN}.

Proof: Consider T= U V,.
i:ViEgý

This union is a closed bounded connected polygonal set whose boundary can be written
as the union of some of the line segments from £. Recall in particular that all these
line segments have non-zero length. Pick one line segment < a, b > from the boundary
of T. Since it forms part of the boundary of T on one side of it lies a Voronoi region
Vi. from 9f. On the other side lies either WC or another Voronoi region Vj. In the first
case the Lemma is proven. Consider the second case. If 1 < j :_ N - 3 then Vi is
strongly contiguous to Vj. Consequently, 19 E G. This contradicts < a, b > being on the
boundary of T. Hence, N - 2 < j < N and the Lemma follows. C

We now detail the construction of the N x (N - 3) matrix Q using boundary over dis-
tance weights. Note that because most elements of Q are zero sparse storage of Q requires
only 0 (N) memory. A non-special point from {xi : 1 < i < N - 3} which has Voronoi tile
that is strongly contiguous to WC will be called a Voronoi external point. Define VE(X)
as the set of indices of all Voronoi external points. All other points are referred to as
Voronoi internal points. The corresponding indices are VI(X) = {1,f ... N - 3} - VE(X).

We first consider forming a column of Q for an index, j, such that j E V1 (X). In
this case the panel Vj shares non-trivial edges only with other Voronoi panels and not
with WC. The column is formed using boundary over distance weights, found from the
Voronoi diagram. For j E VI(X) the boundary over distance weight rij is

= b(xi, xj) for all Vi strongly contiguous to Vi (2.2)
: ri x xj fc

where b(xi, xj) is the length of the boundary between Vi and Vj. For other values of
i 0 j, rij is set to zero. In order that column j of Q is orthogonal to constants the
diagonal element rjj is specified as

r= - rij. (2.3)
i~i

Finally, the jth column of R is scaled by dividing by the area of Vj to obtain the jth
column of Q. Note that the column is by construction diagonally dominant, but not
strictly so.

If j E VE(X) then Vj is stongly contiguous to the complement of W, We. The
boundary segment corresponds to a Voronoi edge between xj and an artificial point, the
reflection of xj in the boundary (see Figure 3 in [7]). The reflected point, ;j, can be
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written as a linear combination of the special points, i.e.,

&j - ANXN + AN-lXN-1 + AN-2XN-2, (2.4)

where AN + AN-1 + AN-2 = 1. If Vj has k edges with WC then k reflected points
{fj,... , &} are required. Associated with each reflected point, &q, are the coefficients
{AN, A A'N_2}. The boundary over distance weights for &q are partitioned amongst
the special points to obtain for all j C VE(X) and i 4 j

(b(x,xj) Vi strongly contiguous to Vi,Ixi-xjl I (,x• 25
rij = l Ai&.X, i e {N,N- 1,N-21. (2.5)

Of course, Vj could be strongly contiguous with a Voronoi panel associated with a special

point. If this is the case+ = Ek 1 M TI Again, for other values of/i j,pont I tisisth cser~ =Ixi-xjl Ip,_-'jj

rij is set to zero. Finally rjj is specified as in (2.3) and column j of Q is defined as
column j of R scaled by dividing by the area of Vj.

Partition Q as

Q E (2.6)Q= F '

where E is (N - 3) x (N - 3). Thus E results from interactions between non-special
points, and F those between special and non-special points. Note in the construction
above that for 1 < i, j _< N - 3, eij is non-zero if and only if Vi is strongly contiguous
to Vj. Furthermore, note that E is necessarily column diagonally dominant, with strict
dominance in column j whenever Vj is strongly contiguous to the Voronoi region of a
special point, or to WC.

Relabelling if necessary we can assume the indices of the Voronoi regions in each of the
equivalence classes 9i form a contiguous subset of {1,..., N - 3}. Similarly, we can also
assume that the indices corresponding to any 9i precede those corresponding to !i+,.
Furthermore, by construction if i $ j none of the regions in 9i is strongly contiguous with
a region in 9j. Thus, corresponding entries in the matrix E constructed using boundary
over distance weights and artificial points are zero. That is E is block diagonal with
the square matrix Eii on the main diagonal corresponding to the equivalence class of
Voronoi regions 9j. More precisely, Q will have form

El l  0 ... 0
0 E22 ... 0

Q :(2.7)

0 0 ... Ekk

F 1  F 2  ... Fk

3 Properties of the matrix Q

In this section we establish the fundamental properties of the matrix Q of (2.7). Namely
that it is of full rank and that its columns are orthogonal to those of P.
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Definition 3.1 For m > 2, an m x m matrix K is irreducible if there does not exist
an m x m permutation matrix P such that

PKpT= [Mn M12]
0 M22'

where M11 is r x r, M 22 is(m-r) x (m -r), and 1 < r < m.

The following result is well known, see for example Varga [6].

Theorem 3.2 Suppose the square matrix K is irreducible and row (column) diagonally
dominant with strict row (column) diagonal dominance in at least one row (column).
Then K is invertible.

Lemma 3.3 Let X be a finite set of distinct points unisolvent for 7r2. Let Eii be one of
the square blocks from the diagonal of Q constructed in the previous section. Then Eli
is invertible.

Proof: From the construction Eji is column diagonally dominant. Furthermore, by
Lemma 2.3 the diagonal dominance is strict for at least one column of Eii. From the
definition of the equivalence relation C-related there is a chain of strongly contiguous
pairs of Voronoi regions, connecting any two Voronoi regions in gi. This implies the cor-
responding entries in Eii are non-zero and hence from [6] Theorem 1.6 Eii is irreducible.
It follows from Theorem 3.2 that E~i is invertible. El

Theorem 3.4 The matrix Q described in Section 2 is orthogonal to P i.e. QTp = 0.

Proof: Omitted, see [2] and [7]. 0

Theorem 3.5 Let X be a set of distinct points unisolvent for 7r2. Let Q be formed by
the construction in Section 2 and Aiy = 4(xi - xj) where 4 is strictly conditionally
positive definite of order 2. Then B = QTAQ is positive definite.

Proof. From Lemma 3.3 each of the matrices E~i occurring in the block partitioning of
Q given in Equation (2.7) is invertible. Hence Q has full rank. Also from Theorem 3.4 the
columns of Q are orthogonal to the columns of P. Let [ be any non-zero vector in ZN-3,

and define A = Qp. Then A 0 0, PTA = pTQp = 0, and ttTBp =,iTQTAQlt = ATAA.
Hence, by the definition of strictly conditionally positive definite, PTBP > 0 whenever
u 0 0 and B is symmetric positive definite. []

Theorem 3.6 Let D be strictly conditionally positive definite of order 2 and such that
-P(hx, hy) = hll(x, y) + ph(x - y), h > 0 with Ph E ir'. The preconditioned matrix Bh,
which corresponds to preconditioning on the point set hX, is a homogeneous function
of scale. Thus its condition number and the relative clustering of its eigenvalues are the
same over all scales.

Proof: Omitted, see [7]. 0

Theorem 3.6 applies in particular to the usual thin-plate spline, (.) = • 12 log [ , in
V.2

The extended version of this paper [7] contains a proof that the elements Bij decay
like Ixi - xj I` when 1xi - xjI is large. For the multiquadric K is three and for the
thin-plate spline r, is two.
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Definition 3.7 The preconditioned matrix S is obtained from B by pre-multiplying and
post-multiplying B by the diagonal matrix D with ii entry 1/V'bI.

4 Numerical results

In this section we present numerical results for the thin-plate spline and multiquadric
basic functions. In the following tables the matrix Ap is defined in (1.4), B in (2.1),
S in Definition 3.7 and the homogeneous matrix, C, is presented in [1]. In Table 1 we
show 2-norm condition numbers of matrices for the various preconditioning techniques
over seven different scales. It is clear that the algorithm in Section 2 gives a matrix
which dramatically improves the conditioning of the interpolation problem. In one case
by a factor of 1014! Tables 2 and 3 contain condition numbers of the matrices resulting
from applying the preconditioning techniques of this paper for the thin-plate spline and
multiquadric basic functions. For N < 3200, the entries in the tables are the maximum
over one hundred random point sets of size N. For N = 3200, the tables contain the
maximum over twenty random point sets of size 3200. In all cases the preconditioning
results in a smaller condition number. For these basic functions the maximum observed
condition number of the scaled preconditioned matrix, S, grows very slowly with N.
Certainly there is no numerical evidence of power growth with N.

Scale parameter Conventional Homogeneous Preconditioned Scaled
a matrix AO matrix C matrix B matrix S

0.001 1.531(11) 1.534(5) 4.905(1) 2.405(1)
0.01 1.544(9) 1.534(5) 4.905(1) 2.405(1)

0.1 1.597(7) 1.534(5) 4.905(1) 2.405(1)
1 3.107(5) 1.534(5) 4.905(1) 2.405(1)

10 1.915(6) 1.534(5) 4.905(1) 2.405(1)
100 1.271(11) 1.534(5) 4.905(1) 2.405(1)

1000 4.006(15) 1.534(5) 4.905(1) 2.405(1)

TAB. 1. Condition numbers for one hundred points in [0, a] 2 and the thin-plate
spline. The point set for scale a is X, = aX 1 .

In an attempt to rule out the possibility that our numerical results were flukes due to
the small number of 100 experiments we also conducted 50,000 trials with random data
sets of size 100. The results of these trials are shown in Figure 1. The maximum condition
number, over all trials with the thin-plate spline, for the matrix AO was 1.2465(9), for
matrix C, 1.5750(9) and for matrix S, 1.8066(2). In our experiments the matrix S is
always well conditioned. This held even for geometries of centres for which the matrix
Ap is very badly conditioned.

To test further the behaviour of S for "bad" configurations of points a similar exper-
iment was run with one thousand trials of one hundred points almost on a circle. The
maximum condition numbers of the A matrix, C matrix and S matrix were 1.2885(9),
7.2692(8) and 6.6005(2) respectively over 1000 trials. Even though the Voronoi regions
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Number of Conventional Homogeneous Preconditioned Scaled
data points matrix AO matrix C matrix B matrix S

200 6.555(7) 3.068(7) 1.617(3) 6.028(1)
400 5.675(8) 3.397(8) 1.945(3) 8.946(1)
800 1.960(10) 1.348(10) 2.034(3) 9.775(1)

1600 1.092(10) 8.413(9) 8.099(3) 1.258(2)
3200 4.997(10) 3.783(10) 1.261(4) 1.569(2)

TAB. 2. Maximum condition numbers encountered over a sample of 100 random
point sets of size N in [0, 1]2 with the thin-plate spline.

Number of Conventional Preconditioned Scaled
data points matrix AO matrix B matrix S

200 2.014(8) 1.532(2) 4.224(1)
400 2.045(10) 5.932(2) 7.669(1)
800 6.641(10) 4.559(2) 5.826(1)'

1600 1.554(10) 7.025(2) 5.601(1)
3200 2.477(11) 9.362(2) 6.280(1)

TAB. 3. Maximum condition numbers encountered over a sample of 100 random
point sets of size N in [0, 1]2 with the multiquadric function, parameter c = 1/v/N.

are long and thin the matrix S is still well conditioned!
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