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Abstract

Procedures for orthogonalisation of Gaussians and B-splines are recalled and it is shown
that, provided Gaussians are negligible in appropriate regions, the same recurrence for-
mulae may be adopted in both and render the computation relatively efficient. Chebyshev
polynomial collocation is well known to be rapidly defined by discrete orthogonalisation,
and similar ideas are commonly applicable to partial differentieal equations (PDEs) and
integral equations (lEs). However, it is shown that the most elementary mixed methods
(both boundary conditions and PDEs being satisfied) for the Dirichlet problem in rect-
angular types of domain can lead to a singular linear system, which may be rendered
non-singular, for example, by a small modification of interpolation nodes.

1 Introduction

Gaussian radial basis functions (RBFs) are negligible outside a certain range, which de-
pends on the accuracy required and the exponent used. For example, if four decimal place
accuracy is sufficient, then outside [-2,2] the function e-A 2 is negligible for A > 2.5.
Indeed the translated RBFs

Oi(x) = e-A(Xi) 2 in=-,0,...,n±1, (1.1)

resemble, at least superficially, a set of translated cubic B-splines, each having a support
of four sub-intervals of length one, contained in [i - 2, i + 2].

Following work of Mason et al [4] and Goodman et al [1], we show that these RBFs,
rounded to the required accuracy, may be conveniently and efficiently orthogonalised so
that
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Orthogonalisation procedures 237

(i) a 4 term recurrence may be adopted identical to the one in [4]
for cubic B-splines,

(ii) inner products may be determined very simply in terms of 4 parts
of a normal distribution,

(iii) a well conditioned calculation results and best 12 approximations
may be obtained immediately with an orthogonalised basis,

(iv) a continuous or discrete inner product (and best approximation)
may be adopted.

In a second application of orthogonalisation, this time to polynomials, it is shown
that a two-dimensional (n + 1) x (n + 1) polynomial collocation problem, which includes
amongst its nodes n Chebyshev polynomial zeros on each of 4 sides of a square, leads to
a singular (rank one deficient) system. For all n, one superfluous equation is readily iden-
tified and a suitable replacement equation is readily found. Discrete orthogonalisation is
used to combine and greatly simplify the equations and prove singularity.

2 Orthogonalised Gaussians

An orthogonal system {Pj} is developed from the Gaussians ¢i in (1.1) using

Pk =• kk - aklPk-1- ak2Pk-2 - ak3Pk-3, k = -1,..., n + 1, (2.1)

where a 13 = a 0 3 - a 0 2  a-1 ,3  a-1 ,2  a-, 0.

Now we define coefficients bk,, for r = 0,..., k+ 1 and k = -1,... n+ 1, as the inner
products

bkr = (qk,Ok-,) = jl q0k(X)0k-r(x)dx,(2.2)

where Ik,r is the common support of Ok and Ok-r and normalising constants nk are the
squared norms

nk= IIPk 2 
= (Pk, Pk) , (2.3)

where (.,.) is the inner product (2.2) and * is the corresponding norm.

Then, setting (Pk, Pk-r) 0 for r = 1, 2, 3 gives

(¢k, Pk-r) = akrnk-r. (2.4)

Taking the inner product of (2.1) with itself gives
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3
n= bo + • [-2akr (k, Pk-r) + arnk-r] , (2.5)

r=1

which, by using (2.4), gives

3

nk = bko - 2a~rnkr. (2.6)

r=1

This is the first basic equation for writing {nk} in terms of {akr} and {bar}.
Now, using (2.1), with k replaced by k - 1, k - 2, k - 3 we obtain

(,k, Pk-3) = bk3 = ak3nk-3 (2.7)

(Ok, Pk- 2 ) = bk2 - ak-2.1 (Qk, Pk-3)

Hence

akin,-2 = bk2 - ak-2,lbk3. (2.8)

Finally
(k, Pk-1) = bkl - ak- 1,1 (Ok, Pk,2) - ak-l,2 (Ok, Pk-- 3 ) ,

so that

aklnk-1 = bkl - ak.-11 (ak2nk-2) - ak-1,2bk3. (2.9)
Equations (2.6), (2.7), (2.8) and (2.9) may be solved to determine all the required coef-
ficients {akr} and {fnk} explicitly by substitution, starting from n- 1 = 11_1112. This
involves 0(n) operations for n + 3 basis functions. The best approximation to a func-
tion f (either continuous f = f(x) or discrete f = (fl,.. ,f m )T ) by orthogonalised
Gaussians may be determined explicitly as

n+1f c Pi,
j=-1

where cj = (Pj, Pj)-' (f, Pj) = (nj) (f, Pj).

2.1 Numerical example
Here we use the procedure for constructing orthogonalised Gaussians to produce an
interpolant to data obtained from a fast response oscilloscope1 . To the left of Figure 1
we see the first three orthogonalised Gaussian functions, with centres specified at the
integers -1, 0 and 1, with support growing from left to right. The figure on the right
shows the oscilloscope data ** and the fitted o-Gaussian interpolant .

'Oscilloscope data supplied by Centre for Electromagnetic and Time Metrology, National Physical
Laboratory, London, UK.
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In this example we use 512 centres and choose A = 2.5 in (1.1). Since our choice
for A requires only four decimal place accuracy, the normal equations produce the usual
identity matrix and the coefficient vector {c-1,... Cn+l} can then be determined by the
equations c = ATf where f = {fl,... , f m } and Aij = Pj(xi). The fit is extremely good
and vindicates the neglecting of the Gaussians outside the interval considered.

0.4

-3 -2 -1 0 2 3 -3 100 20 0 C

FIG. 1. First three orthogonalised basis functions and o-Gaussian fit to oscilloscope data.

2.2 Extensions to orthogonalised Gaussians

The following extensions are clearly possible.

(i) Use of generally placed centres (knots) and/or a discrete inner product.

(ii) Use of higher dimensions - as in Anderson et al [2].

(iii) Replacement of interval (-co, co) in a continuous norm by [0, n]
and [0, n] by [0, 1] using scaling.

(iv) Consideration of a function with wider (approximate) support, such as [-3,3]
or more generally I-r, r] for r > 2.

3 Chebyshev polynomials in two-dimensional collocation
The (first kind) Chebyshev polynomial Ti(x) of degree i is defined by

T (x) = cosi0 i=oO,...,m, -1<x<1, (3.1)

where x = cos 0 and 0 < 0 < ir.
Among its many properties is the discrete orthogonality property

m 0 for i j; ij~ m-1
STi(Xk)Tj(Xk) M for i= j = 0 (3.2)
k=1 ½m1  for i=j•0O,

where Xk are the m zeros of Tm(x), namely
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Xk = cos ((2k-1)i)I k=l,...,m. (3.3)

The orthogonality property of (3.2) is not a unique one amongst the Chebyshev poly-
nomials of four kinds. Indeed, Mason and Venturino [5] showed that there are at least
fourteen such formulae, depending on alternative weights, choices of Chebyshev-related
abscissae and kinds of Chebyshev polynomial.

3.1 The elliptic problem - mixed methods

Let us now exploit this property (3.2) in a pseudo-spectral method for a linear elliptic
PDE problem on a square. The PDE

Lu f(x,y), IxI, IyI <, (3.4)

subject to

u = g(x, y), (3.5)

where g(x, y) is a function known explicitly only on x = ±1 and y - ±1, can be solved
approximately in the form

M n

u = umn = E' E>' aijTi(x)Tj(y), (3.6)
i=O j=O

where a dashed summation denotes that the first term in a sum is halved.

To obtain equations for aij, we solve

Lurnn = f, at the (m - 1) x (n - 1) zeros of T,,-i(x)T,_i(y), (3.7)

u =n g, on x - ±1 at zeros of T, (y) (2n equations), (3.8)

umn = g, on y = ±1 at zeros of Tm(x) (2m equations). (3.9)

Together (3.7)-(3.9) form (m + 1) x (n + 1) equations for {aij}. However, we claim that
the included equations (3.8), (3.9) are singular of joint rank 2m + 2n - 1. If this is so,
then the system is singular without consideration of the PDE collocation equations (3.7).
The equations (3.8), (3.9) become

m n m n
9k,±1 -- E' E' aijTi(xk)Tj(±l), g~l~t E• ' E' aijTi(=kl)Tj(ye), (3.10)

i-=O j=O i=O j=O

where Xk, yW are zeros of Tmi(x), T,(y) respectively and where

gi', = g(1," y), g-ie = g(-1, w),
gk,1 = g(xk, 1), gk,-1 = g(xk,-1).
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If we add/subtract the first pair and also the second pair of equations in (3.10), noting
that

Tj() W 1 Tj (- 1) =(1),

we deduce that

m n m n

-0) = ' ajT.(xk), d 1 -l) Z' Z'ajjTi(xk), kz=1,.,m, (3.11)
i=O j=0 i=0 j=O

(j even) (j odd)

rn m n

e(0)= 1N' ' ajTj(,y), em1) ' Z' ajjTj(y), tl 1,..,n, (3.12)
i=o j=0 i=0 j=0

(i even) (i odd)

where,
d(kO) = l(9k,1 + gk, - 1), d(1 ) = l(gk,1 - gk,-1),

0) = (g, + 9-" ,), e •-- =(g9,1 - g-l,f).

Multiplying (3.11) by 2T,(xk)/(m + 1) and summing over k, and multiplying (3.12) by
2T,(ye)/(n + 1) and summing over f, discrete orthogonality (3.2) gives

-~) • o -1 _ 1)
R+1 aj ab3 -=r+i, r =0 ,... ,m- 1, (3.13)

j=0 j=r
(j even) (j odd)

"C(O) a. a (=+1, C,+== aj, c+1, s=O,...,m-1, (3.14)
i=0 i=0

(i even) (i odd)

where
2 m 2 M ,

b( m +1= E d(kO)T,(xk) b(1) = P)LTl(xk),
. M~ + m + 1

k=1 k=-1

C(o) 2 (1) = 2 •-- Zes 0 1 s -- E e(1)Ts(ye)"
+1 n= l - 1

,•=1 f=1

This constitutes a greatly simplified system to replace (3.10). Indeed we may verify
that, for m =n,

m--1 m--1

Z kR(t) - c'C ) (3.15)
i=0 i=0

(m - i odd) (m - i odd)



242 J. Mason and A. Crampton

where t = 0, 1 for m = odd, even, respectively, and hence that the equations (3.13) and
(3.14) are singular. For example, for m (= n) = 2, we seek equations in aoo, ... , a 2 2, and
(3.13) gives

R(°) a00 + a02 , R a1) , (3.16)R(°) - a10 + a12, R(1) =all,

meanwhile (3.14) gives

C(0) _a0 + a 20 , C(1) a10 ,

a 21 (3.17)

5o0) =a 1 l + a 21 , (() a 11 .

Clearly R(1) - C(), consistent with (3.15) for m = 2. Which equation do we eliminate?

For simplicity, in the case of m even, we delete the equation for '2(1) and replace it by

the equation for R( 0 )1 It is easy to verify that, within the system (3.13) and (3.14), this

leads to full rank, and R(0) is equivalent to boundary specifications of either of

u(0, 1) + u(0, -1), (3.18)
u(1, 1) + u(- 1, 1) + u(1, -1) + u(- 1, -1).

For m = n = 2, this is equivalent to

R -°) a20 + a22. (3.19)

In the case when m is odd, we delete the equation for C(°) and replace it by the

equation for 0(1) the latter being equivalent to adding four boundary point conditions
anti-symmetrically, i.e.,

u(1, 1) - u(-1, 1) + u(-1, -1) - u(1, -1). (3.20)

If g(x, y) is known everywhere in the square, then we could of course consider replacing a
mixed collocation problem by an interior collocation problem by including the boundary
conditions automatically in the form of approximations. For example, we could replace
the form (3.6) by

rn-2 n-2

umn = (x 2 
- 1)(y 2 

- 1) 1' 1' aijTi(x)Tj(y) + g(x,y), (3.21)
i=0 j=0

or by an alternative form such as

m n

Um~ = 3' E' 0 (T (x) -Ti(x)) (Tj(y) -Tj(y)) +g(xy), (3.22)
i=0 j=0
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where T= To (x) or T1 (x) according as i is even or odd. These forms have the disad-
vantage of being difficult to generalise to other kinds of (non-rectangular) boundaries,
although (3.21) is adaptable to the case where an equation of the boundary is known
(see Mason [3]).

The best Chebyshev method available for the Poisson problem on a rectangle is
probably a "differentiation matrix" method, such as is described in Trefethen [6], which
represents the solution by nodal values rather than Chebyshev coefficients.

Acknowledgement: We thank the referees for their perceptive remarks.
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