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Abstract

We consider the fitting of geometric elements, such as lines, planes, circles, cones, and
cylinders, in such a way that the sum of distances or the maximal distance from the
element to the data points is minimized. We refer to this kind of distance based fitting as
orthogonal distance regression or ODR. We present a separation of variables algorithm
for 11 and l1 ODR fitting of geometric elements. The algorithm is iterative and allows the
element to be given in either implicit form f(x,,3) = 0 or in parametric form x = g(t, 03),
where 3 is the vector of shape parameters, x is a 2- or 3-vector, and s is a vector of
location parameters. The algorithm may even be applied in cases, such as with ellipses,
in which a closed form expression for the distance is either not available or is difficult to
compute. For 11 and l1 fitting, the norm of the gradient is not available as a stopping
criterion, as it is not continuous. We present a stopping criterion that handles both the
11 and the l. case, and is based on a suitable characterization of the stationary points.

1 Introduction

Let us be given N points {zi}N 1 E R•d and a geometric object S in

"* implicit form {x : f(x, /3) = 0} with a scalar function f, or
"* parametric form x = g(t, /3) with a vector function g,

where the shape parameter vector /3 E C lies within a closed, convex subset C of R1.
Denote by

0i(,3) = inf{11zi - xi 12 : xi on S}

the distance of the point zi to the geometric object S. Let

0(0) = (01(0),..., ON(0))'
be the distance vector with norm

IDA = 11(/3)11
where 110(/3)1 denotes either the /o-norm

"D(O3) = max(01(/3),. . ,ON(/3))
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or the 11-norm
N¢(/3) =

i=l

We consider the problem:

Find 3 E C and points {xi} 1=l on S such that 4()3) = 110(/3)11 is minimal.

If the minimum is attained, each function i(/3) = Hzi - 412 is minimal for the
point xi E S. Then zi - xi is orthogonal to S for interior points of S, hence the term
"orthogonal distance regression" or "ODR".

Nonlinear 11 ODR problems are treated in WATSON [10, 12]. A survey for linear
problems is given in ZWICK [13].

As stated, the problem has dimension Nd + m. In typical metrology applications, the
data set is very large so that a direct approach to the problem becomes computationally
expensive. We use a separation of variables algorithm that was used in [2, 4] and TURNER

[9] for the 12 ODR problem. Each iteration of our algorithm consists of two steps. In the
first step, the foot points { i}1' 1 on S, i.e., the location parameters, are calculated for
a fixed parameter vector /3. These d-dimensional subproblems can be efficiently handled
by trust region methods [3].

In the second step, a first order approximation of i (/3) is employed, that can be given
without explicit knowledge of the dependence of the optimal points xi(/3) on /3. At this
stage, the norm of the correction to the parameter vector /3 is limited by a trust region
strategy. The correction can be computed by solving a linear programming problem.
For general nonlinear minimax problems such methods were proposed in MADSEN AND
SCHJER-JACOBSEN [6], HALD AND MADSEN [1] and J6NASSON AND K. MADSEN [5].

Our convergence analysis follows the general approach given in POWELL [8] and MOR9
[7]. But in order to handle the 11 and l1 case we cannot use the norm of the gradient
as a stopping or convergence criterion, since the gradient is not continuous. Moreover, a
neccessary condition for a minimum is that the subgradient contains the zero functional,
see, e.g., WATSON [11]. In order to overcome this difficulty, we introduce a replacement
for the norm of the gradient that serves both as a stopping criterion and as an essential
tool in the convergence proof.

2 The trust region algorithm
At each iteration of our algorithm we solve the low-dimensional subproblems (Pi) for

/3 =/3k for each fixed i, i = 1,..., N:

Minimize Ilzi - x1 2 subject to f(xi,/3) = 0 orxi = g(ti,/3).

In order to apply the trust region method to 11 and l1 ODR we need a first order

approximation bi(/3, a) to ¢ (/3). With appropriate regularity assumptions, this can be
computed without knowledge of the dependence of the optimal points xi(/3) on /3 ([2],
[4]). This means that the iterative improvement in /3 is uncoupled from the calculations
of xi(/3), whereby a true first order approximation of the objective function is attained.
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In the case of the implicit form f(x,,3) = 0, the first order approximation ¢i (0 +a)
?i (/3, a) + o(a) is given by

,a) =Vxf(xi, 3)T(zi - xi) + Vof(xi, 03)W2

IIV•I(x•, )112 ' (2.1)
as a first order approximation to the signed distance +±0(3 + a). For the parametric
form x = g(t, /3), we have

Vj(0,a) = li - - (zi - xi)T D*g(xi, O)a. A (2.2)

,lIz - 4 1Di2
Note that (2.1) makes sense even for points on the surface. For an orientable hypersurface

in parametric form, the expression lZ_ in (2.2) should be replaced by the unit normal
for points on the surface.

Denote by
V)(0) = (0/ (0),'')N(0))T

the vector of the linearized distances and let

,I(/, a) = IIj(13,a)lI - I&(0)II.
The main algorithm:

"* Step 0: An initial fo G R', a trust region radius A0 > 0, and constants 0 <i < 1
and 0 < -y < 1 <7y, A are given. Set k = 0.

"* Step 1: Minimize T (/3k, a) subject to IIa112 -< Ak and 13k + a e C. Let ak denote
the solution with minimal norm.

"* Step 2: If ak = 0, stop.

"• Step 3: Compute

Pk = (P(Ok + ak) - (/3k-)ok = (Ok, ak)

"* Step 4:
(1) Successful step. If Pk _> p set

03k+1 = /3k + ak

and choose Ak+1 such that

Ak < Ak+1 < min(YAk,A). (2.3)

(2) Unsuccessful step. Otherwise, set

03k+1 = /3k and 0 < Ak+1 < yAk.

"• Step 5: Increment k by one and go to Step 1.

3 Global convergence
In an abstract setting our problem may be formulated as

Minimize I)(/) = II¢(/3)II on a closed, convex set C.
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To solve this problem, at each stage of the iteration we solve the following constrained,
linearized problem:

Minimize T(/(, a) subject to 3 + a E C and hail _ A.

In order to get the linearization in our case, we solve the least distance subproblems
(Pi), i = 1, ... , N, with a shape parameter 3, and use (2.2), or (2.1).

For the purpose of characterizing stationary points, we introduce the quantity

V =1 -inf{Q'(0,a) I 1alll, 03+a E C}.

Note that V1 (/3) Ž! 0, since T(3, 0) = 0.
By convexity, V1 (3) = 0 implies that a = 0 is a solution of the linearized minimization

problem. MADSEN AND SCHJIER-JACOBSEN [6] have shown that the latter condition is
equivalent to a condition given therein for the functional to have a stationary point. In
order to prove Theorem 3.3 we prove a lemma that was given in a similar form for the
l case in MADSEN AND SCHJIER-JACOBSEN [6] and J6NASSON AND MADSEN [5]). We
give a different proof that is applicable to both the l and l1 cases.

Lemma 3.1 Let V1 (/) > e and A < A. For the solution of the linearized problem the
estimate

T (0, a) <5 -CEA (3.1)

holds, with a constant that depends only on c and A.

Proof: According to the definition of V1 (3) and the continuity of T there exists a
feasible a, with Ilal1l _ 1 such that

T (3, ai) = -e.

Let a tai, where t = min(l, A). Since T(0, a) is a convex function, we get

%P(O, a) • (1 - t)T(/3, 0) + tq(O, al) = -te.

Since
t > Amin(1, 1/2)

we get the conclusion with C = min(1, 1/A).

Proposition 3.2 For a minimum point,

V1 0() =0

holds.

Proof: Assume the contrary, then V1 (3) = E > 0 holds. According to the definition of
T (3, a) we have

S+ = + a) + o(a).

By Lemma 3.1, we can find an a with hlail _< A such that (3.1) holds. As in the proof of
the Lemma, we may conclude that

4(,3 + ta) • <(O) - CEtA + o(ta)

for 0 < t < 1. If we let t -* 0 we get a contradiction to the minimum property. C
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Theorem 3.3 Either the algorithm ends in a finite number of steps, or a sequence fA.
is generated for which lim infk-., V1(03k) = 0.

Proof: Assume the contrary. Then there exists e > 0 such that Vc(flk) Ž e holds for
all k. By the definition of Pk and the lemma, it follows that for a successful step

0(0k+1) < ¢(Ok) - CEAk

and by the updating rule for Ak+1 we get

Ak+l _< c(¢(fk+:) - 0(k)),

with c = 1/(pCE). Combining this inequality with the updating rule for an unsuccessful
step yields

Ak+1 < -YAk + c(0(I3k+1) - 0(0)).

By summation and the monotonicity of 0(00k) it follows that for all N
N a
ZAk< A0 + c0/3

k=0

Since this implies the convergence of ZAk, we get lim Ak = 0. From 1/fl3kI 1• Ak we
obtain the convergence of 3 k. From the definition of Pk it then follows that lim Pk = 1.
But then the updating rule (2.3) implies that eventually Ak+± > Ak, which gives a
contradiction. El
Theorem 3.4 (Global Convergence, cf. MOR9 [7], POWELL [8]) Assume that Vj(f)
is uniformly continuous. Then either the algorithm ends in a finite number of steps, or
a sequence 13k is generated for which

lim V1(flk) = 0.
k- -oo

Proof: Assume the contrary. Then there exists an cl such that for each k0 there exists
a k > k0 with

Vl()k) > El.

By Theorem 3.3 we can find an index 1 > k such that
V1(01•) _< EI/2

(k0 will be determined later). We choose the smallest such I. As in the proof of Theorem
3.3, it follows that for that a successful step with k < i < 1,

Ii3±i~l - All < Ak < 2c,(0(/3) -¢(A+1)).

Clearly, this also holds for an unsuccessful step. This yields

110, l - < 2ci(¢(0k) - 0(01)).

Since 0(0j) converges by monotonicity, we can make 1101 - All arbitrarily small for large
enough k0 . By the uniform continuity of V1 (/3) we infer

[V1 (/k) - V1(001)1 < e/2,
which is a contradiction. El



Fitting of geometric elements 167

4 A numerical example

As an illustrative example, we fit an ellipse to data, given as coordinate pairs in R2. There
are 24 data points and five components to the shape parameter vector (i.e., n = 2, d =

2, m = 5, N = 24). We used a standard parameterization involving a center (x0 , y0), the
axes (a, b), and a rotation angle 0.

The output is shown below. The initial values for the parameters and the obtained
parameters in three different norms are given in Table 1. In the 12 case, we give as the
error the root mean square error, in the 11 case the mean absolute deviation, and in the
1.. case the maximum deviation. ×

xX

X¢

X X

12 x X•

FIG. 1. 12, 11, and l•-Approximation.

Xo a b 9 (degrees) Error
Initial
values 0.4989881 -1.4262126 4.6719913 0.4364267 20.75913
12 0.6637511 -1.3987826 5.5124671 0.3376480 20.90124 0.11520
l1 0.5368646 -1.4465520 5.2778061 0.3358224 20.88869 0.09047

l 0.7694412 -1.3829474 4.9731226 0.4491259 20.66893 0.23489

TAB. 1. Parameters for different norms.
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The number of iterations in each case was five or six. We note that the deviations for
the best fit 11 and 1l, ellipses exhibit behavior typical to these norms: five of the data
points lie on the best fit 11 ellipse and there are six deviations of largest magnitude in
the l1 case.
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