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Abstract

Self-calibration techniques have been used extensively in co-ordinate metrology. At their
most developed, they are able to extract all systematic error behaviour associated with
the measuring instrument as well as determining the geometry of the artefact being
measured. However, this is generally at the expense of introducing extra parameters
leading to moderately large observation matrices. Fortunately, these matrices tend to
have sparse, block structure in which the nonzero elements are confined to much smaller
submatrices. This structure can be exploited either in direct approaches in which QR
factorisations are performed or in iterative algorithms which depend on matrix-vector
multiplications. In this paper, we describe self-calibration approaches associated with high
accuracy, dimensional assessment by co-ordinate measuring systems, highlighting how the
associated optimisation problems can be presented compactly and solved efficiently. The
self-calibration techniques lead to uncertainties significantly smaller than can be expected
from standard methods.

1 Introduction
An important activity in metrology is the calibration of instruments and artefacts. Cal-
ibration defines a rule which converts the values output by the instrument's sensor(s)
to values that can be related to the appropriate standard (SI or derived) units. Import-
antly, to these calibrated values it is required to assign uncei'tainties that, reliably take
into account the uncertainties of all quantities that have an influence. As a consequence,
the size and complexity of the computational tasks associated with the data analysis can
be significant, even for instruments that appear to be of simple design and operation.
It is thus beneficial to design and implement algorithms that are efficient with respect
to computation and memory. Fortunately, many of the calibration problems give rise to
systems of equations with a well defined sparsity structure.

The rest of this paper is organised as follows. In Section 2 we review least squares
approaches to calibration problems and go on to describe self-calibration problems in
co-ordinate metrology in Section 3. Sections 4 and 5 describe solution methods for two
types of sparsity structure. Our concluding remarks are given in Section 6.

2 Least squares solution to calibration problems
In many calibration problems, the observation equations involving measurements yj
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can be expressed as yi = i(a) + ei, where Oi is a function depending on parameters
a = (al,..., a,)T specifying the behaviour of the instrument, and Ei represents random
measurement error. For a set of measurement data {yj}', best estimates a* of the
calibration parameters a are determined by solving

m

min -f(a) = fTf, (2.1)

where fi (a) = y- Oi (a). The most common approach to solving this problem is derived
from the Gauss-Newton algorithm; see, for example, [5]. If a is an estimate of the solution
and J is the Jacobian matrix defined at a by Jij Of /Oaj, then an updated estimate
of the solution is a + p, where p solves the Jacobian system

Jp =

in the least squares sense. Starting with an appropriate initial estimate of a, these steps
are repeated until convergence criteria are met.

A numerically stable method of solving the Jacobian system is to find a factorisation
J = QR, where Q is an m x n orthogonal matrix and R is an upper-triangular matrix
of order n (see, e.g., [1, 6]). The solution p is determined efficiently by solving the
upper-triangular system

Rp = _QTf,

using back substitution. The matrix Q can be constructed using either Householder
reflections, which process the Jacobian matrix a column at a time, or Givens plane
rotations, which process the matrix row-wise. For either approach the orthogonal fac-
torisation requires 0(mn2) operations.

An alternative to the direct approaches to solve matrix equations is to use iterative
procedures based on conjugate gradients. The advantage of these approaches is that they
involve only matrix-vector multiplications and for sparse matrices these multiplications
can be made efficient. In particular, the LSQR algorithm of Paigd and Saunders [7]
implements an iterative approach to solving linear least squares problems.

Often, linear equality constraints on the parameters of the form CTa - c, where C
is an n x p matrix, p < n, are required to eliminate degrees of freedom in the problem.
However, we can use orthogonal projections to eliminate these constraints. Suppose C
is of full column rank and has QR factorisation

C= [V1 V2 ][O1
where V1 and V2 , respectively, are the first p and last n - p columns of the orthogonal
factor V. If a0 is a solution of CTa = c, then for any (n - p)-vector 5, a = a0 + V2 dt
automatically satisfies the constraints and the optimisation problem can be reformulated
as the unconstrained non-linear least squares problem

m

min_ fi (ao + V2d),
a=



148 Alistair B. Forbes

involving the reduced set of parameters d. We note that the associated Jacobian matrix
is simply J = JV2, where Jii = Ofi/Oaj, as before.

Unfortunately, even if J has structure J = JV2 could be full. For indirect approaches,
this is of little consequence since the matrix-vector multiplications can be formed in two
stages (e.g., y = V2 x, z = Jy) each of which can be implemented efficiently. For a direct
approach, it may be possible to implement the constraints in such a way as to minimise
the amount of fill-in during the orthogonal factorisation stage.

3 Self-calibration problems in co-ordinate metrology

Co-ordinate metrology is concerned with defining the geometry of two and three dimen-
sional artefacts from measurements of the co-ordinates of points related to the surface
of the artefacts. It is a key discipline in quality and process control in manufacturing
industy. In a (conventional) co-ordinate measuring machine (CMM) with three mutu-
ally orthogonal linear axes, the position of the probe tip centre is inferred from scale
readings on each of the three machine axes. In practice, CMMs have imperfect geometry
with respect to the straightness of the axes, the squareness of pairs of axes and rotations
describing roll, pitch and yaw, and these systematic errors have to be taken into account
if the accuracy potential of the CMM is to be more fully realised. Two approaches can
be adopted to nullify the effect of these systematic errors. The first - error mapping -
involves performing a set of experiments to characterise as completely as possible the
error behaviour of the instrument and then use error correction software to produce more
accurate co-ordinate estimates. The disadvantages of this approach are, firstly, the set
of experiments is expensive to perform and, secondly and more importantly, the error
behaviour of the CMM is likely to drift so that, for example, an error correction valid on
Monday will only be partially valid on Friday and may be of limited value a month later.
The second approach - self-calibration - attempts to use any approximate symmetries,
rotational or translational, of the artefact so that systematic errors associated with the
measuring system are identified as part of the measurement process [4]. The advantage
of this method is that the effect of systematic error behaviour of the instrument is can-
celled out and the accuracy of the measurements are limited only by the smaller, random
component.

3.1 Calibration of reference artefacts in 2-dimensions

As an example, we consider the accurate calibration of 2-dimensional artefacts by a two
dimensional CMM. The artefacts define the location of targets nominally aligned in a
grid pattern. Let yj, j = 1,... ,ny, be the locations of the targets in a fixed frame of
reference, and let

Yj,k = T(yj, tk)

be the location of the jth target in the kth measuring position. Here, the roto-translation
T is specified by three parameters t defining the translation vector and angle of rotation.

We suppose the systematic error of the two dimensional CMM can be expressed as

x* = x*(x, b) = x + e(x, b),
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where x* are the true point co-ordinates, x are the indicated point co-ordinates output by
the machine and e(x, b) is the error correction term depending on x and error parameters
b. For instance, suppose the model describes scale and orthogonality errors so that

x* = x(1 + bi) + y(1 + b2 ) sinb3, y* = y(1 + b2) cosb3.

If xi is the measurement of the jth target with the artefact in the kth position then the
associated observation equation is

xi + e(xi, b) = Yj,k + Ei. (3.1)

Given a set of such measurements {xi}l-x and associated index functions (j(i), k(i))
specifying the targets and artefact positions, estimates of the model parameters can be
determined by solving a non-linear least squares problem

mx
min ZfTfi,

{yj},{tk},b i=i

where fi(YJ(), tk(), b) = xi + e(xi, b) - Yjk.
The model involves three sets of the parameters: the target locations {yj }, transform-

ation parameters {tk} and the error parameters b. Each observation equation depends
on only one target and one transformation, so that the Jacobian matrix J of partial
derivatives can be ordered to have a block-angular structure [2]

K, J,
[K K 2  /J2

Km x Jm•x

where Kj corresponds to the parameters yj and the border blocks {Jj} correspond to
the border parameters a = {{tk}, b}. The frame of reference for the targets {yj} can be
specified by applying three appropriate linear equality constraints on the transformation
parameters {tk}.

While scale and orthogonality errors are often major contributors to the systematic
error behaviour of a CMM, there is no guarantee nor does' experience show that they
explain the full extent of the behaviour. For this reason, more comprehensive models have
been developed [3, 91. However, they all depend on the approximation of actual behaviour
by empirical functions such as polynomials and the adequacy of the approximation is
often difficult and expensive to evaluate. However, if we always rotate and translate the
artefact according to the symmetries of the reference artefact so that the targets are
always located (nominally) at a subset of a fixed grid of points in the CMM's working
volume, then measurements are made at a finite number of machine locations. To the
lth location we associate a machine error el. If the ith measurement is made at the lth
location then the observation equation corresponding to (3.1) is

xi + el = Yj,k + Ei.

The advantage of this error model is that it entails no significant approximation: the
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FIG. 1. Sparsity structure of the transpose of the Jacobian matrix a~ssociated with the
measurement of a 5 x 5 hole plate in eight positions.

systematic errors are modelled exactly. An apparent disadvantage is that there are likely
to be as many error parameters as target parameters giving rise to a sparsity structure
in the Jacobian matrix for which direct, structure-exploiting methods provide relatively
minor efficiency gains. Figure 1 shows on the left the sparsity structure of the Jacobian
matrix J associated with the measurement of a 5 x 5 hole plate in eight positions, the
first four corresponding to rotations by 0, 90, 180 and 270 degrees, the second four
incorporating a translation as well as a rotation. In each position the location of the
targets yj are measured in order. The nonzero elements of the matrix are represented
by a dot. The first (second) 50 columns correspond to the derivatives with respect to
the machine error parameters el (target parameters yj) and the last 24 correspond to
the eight sets of transformation parameters tk. On the right the sparsity structure of the
triangular factor of J is illustrated and shows the substantial fill-in that occurs.

In the next two sections, we describe approaches for dealing efficiently with block-
angular and more general sparse-block structure.

4 Algorithms for block-angular systems

We consider non-linear least squares problems where the optimisation parameters can
be partitioned into two sets 77 = {yj}•' and a, and such that each observation equation
involves a and at most one set of parameters yj. Corresponding to (2.1), we have instead
an objective function of the form

F(i/,a) = f'(a)fo(a) + EfT(yja)fj(yj,a).
j
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The associated Jacobian matrix J and its triangular factor R can be arranged to have
the form

K1  J, R, B1
K 2  J2 R2 B 2

Kn, J., Rny Bny

Jo Bo

The nonzero blocks of the matrix R can be stored compactly in a vector r, row by row.
Efficient updating strategies for such triangular factors have been incorporated into

a non-linear least-squares solver to deal with block-angular problems. It is assumed that
the Jacobian matrix is composed of nB blocks of rows, with the ith block depending on
at most one set of parameters yj, j = j(i). The user is required to supply a function and
gradient evaluation module that given 17, a and 1 < i < nB, returns j = j(i) and

fi (a), Ji, j -- 0,
fiyj, a), Ji, Ki, j > 0.

For each i, the triangular factor and righthand side vector is updated by the ith block
of rows:

Linear equality constraints on the border parameters a implemented using the orthogonal
projection approach can be incorporated by setting Ji := JiV2 at the appropriate stage.

5 Algorithms for sparse-block matrices
Let m x n matrix S be composed of riB submatrices Sk of dimension mk x nk. We
assume that Sk is stored (column-wise or row-wise) as a column vector sk. The inform-
ation in S can be encoded in a column vector s, and an indexing set Is such that
Is(I : 5, k) = (ik,jk, Mk, nk, lk) where (ik,jk) specifies the location of Sk(1, 1) in S and
lk indicates that sk = SI(lk : lk + mknk - 1). Blocks of such matrices can be easily
represented by concatenating the s-vectors and index matrices Is and performing some
trivial index modifications. Matrix-vector multiplications of the form y :-= aSx + fly are
easily implemented through a sequence of full matrix multiplications: y :=Ofy, followed
by

y(ik : ik +mk - 1) := y(ik : ik +mk - 1) + aSkx(jk : jk + nk - 1),

k = 1,..., nB. A similar scheme calculates x := aSTy+/3x. The storage and multiplica-
tion scheme can be modified to take into account the type or structure of the submatrices
Sk.

To implement linear equality constraints, it is required to perform matrix multiplic-
ation by a submatrix V2 of the orthogonal factor of the constraint matrix C. A simple
scheme can be implemented using the LAPACK routines DGEQRF (orthogonal fac-
torisation) and DORMQR (matrix multiplication by an orthogonal matrix stored as a
product of Householder matrices) [8].
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FIG. 2. Residual errors associated with the first 1000 observations for models a) with
no error separation (dots) and b) with error separation.

We have implemented a non-linear least squares solver for sparse-block systems. The
user is required to supply a module that takes as input the current estimate a of the
optimisation parameters and outputs the function values f(a) and the Jacobian matrix
stored in sparse-block form (sl, Is). The solver implements a Gauss-Newton approach
using the LSQR solver to find the Gauss-Newton step and caters in a straightforward
way for linear equality constraints. The solver has been successfully tested in a number
of self-calibration problems. For example, it was used recently in the calibration of a
13 x 13 grid of targets on a glass plate by a CMM with an optical probing system. The
problem involved approximately 15,000 observation equations in over 800 optimisation
parameters and was solved in a few tens of seconds using a standard laboratory PC (450
MHz). The advantage of the error separation model is illustrated in Figure 2 which shows
the residual errors associated with the first 1000 observations for models a) with no error
separation (dots) and b) with error separation. The fit for the error separation model is
much superior. The practical metrological consequence of adopting the enhanced model
is that uncertainties associated with the target locations can be reduced by a factor
of five. Importantly, because the model is a realistic approximation of the measuring
system, we can have confidence in the uncertainty estimates derived from the model.

6 Concluding remarks

The move to more accurate measurement systems has led to more comprehensive models
of the measuring instrument and its interaction with the physical quantity being meas-
ured. These models include parameters that describe properties of the instrument and
those of the measurand. The aim of self-calibration experiments is to determine as much
as possible about both sets of parameters from a set of measurement experiments. For
models with a small to modest set of parameters, a full matrix approach may be accept-
able. For larger systems, exploitation of sparsity structure in the defining equations is
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highly desirable and often a stark necessity if the computations are to be made in an ac-
ceptable time using the computing resources to hand. The exploitation of block-angular
structure has been well-known and well-used in some areas of metrology. The supporting
numerical technology based on structured orthogonal factorisations is mature, compact
and easily implemented using standard numerical linear algebra. However, these tech-
niques could be applied more widely in metrology, making feasible approaches that have
to be rejected if full matrix methods only are to be used.

The use of sparse matrix techniques is relatively rare within metrology. We have
attempted to show here that in self-calibration problems in dimensional metrology, they
allow us to develop improved models that provide vastly superior fits to the data, with
corresponding improvements in the evaluated uncertainties in the fitted parameters. The
supporting numerical technology is maturing and accessible.
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