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Abstract

To combine the information from several laboratories to output a representative value
x, and its probability distribution function is the main aim of an inter-comparison in
Metrology. Here, the proposed procedure identifies a simple model for this probability
function, by taking into account only the probability interval estimates as a measure of
the uncertainty in each laboratory. A mixture density model is chosen to characterize
the stochastic variability of the inter-comparison population considered as a whole. The
bootstrap method is applied to approximate the distribution function of the comparison
output in an automatic way.

1 Introduction
The "mise en pratique" of the Mutual Recognition Arrangement (MRA), issued by na-
tional metrological Institutions in 1999, prompted new studies and projects in Metrology
mainly concerning the inter-laboratory comparisons area.

Recently, considerable effort has been devoted to finalise the problem of the choice
of a suitable statistical procedure to summarise inter-comparison data. The problem
solution is influenced by both metrological and statistical considerations, but it can also
depend on the physical quantity under comparison.

Some of the critical issues now emerging are related to several different reasons. For
instance, the statistical information supplied by each laboratory is synthetic, since it
comes from a data reduction process performed on several experimental datasets. In
each laboratory, assumptions and statistical reduction procedures may be different and
sometimes not fully documented or the a priori information on the original data may
be insufficient to define a "credible" probability distribution function (pdf) for output
quantities of the inter-comparison.

The use of the whole sets of original data from each laboratory might be an unfeasible
approach in the inter-comparison case, due to the unavailability of all needed data or
to practical reasons. At present, the practice is to supply synthetic information xi by
each participant to the inter-comparison and to use a location estimator to output the
representative value.
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A bootstrap algorithm for mixture models 139

Efforts should be given to improving the reliability of inter-comparison results by
asking for the use of any a priori information and of its "credibility" to go ahead,
towards the direct estimation of the output of the comparison, x,.

This paper proposes the identification of a solution without resorting to the synthetic
values and its point estimates of the standard uncertainty, but only to the probability
interval estimates as the measure of the uncertainty. This approach consists of two
parts: a modelling procedure to identify a simple mixture model able to approximate the
stochastic variability of the inter-comparison population as a whole; a parametric Monte
Carlo algorithm to automatically estimate the probability distribution of the output x,
and any accuracy measures at a prescribed precision.

The concept of a mixture of distribution functions occurs when a population made
up of distinct subgroups is sampled, for example, in biostatistics, when it is required
to measure certain characteristics in natural populations of a particular species. In an
inter-comparison each participant constitutes a subgroup.

The Monte Carlo method, based on the principle of mimicking sampling behaviour,
can always compute a numerical solution in an automatic way, also when the required
analytic calculations may not be simple. If the Monte Carlo method is applied with the
principle of substitution (of the unknown probability function with a probability model
estimated from the given sample), the approach is known as the bootstrap approach [4]
and is already used in Metrology [2]. In [1] the case of a multivariate normal mixture
model is considered and the standard errors are estimated by means of the parametric
bootstrap. The present algorithm will be applied to a thermometric inter-comparison,
where data cannot be assumed to be normally distributed.

2 Data structure of an inter-comparison with interval data
The number, N, of laboratories involved in an inter-comparison is typically small. In
the i-th laboratory, the (• ,..., i)) measurements are supposed to pertain to a single
probability distribution function, say Fj (A), where A is the parameter vector, that may be
partially unknown. The measurements are statistically analysed and reduced to provide
to the comparison the synthetic value xi and its uncertainty ui at 95% confidence level,
or a 95% uncertainty interval (95%CI): ((x1, Ul)... , (XN, UN)).

In this work the uncertainty is considered as "a 95%CI rather than as a multiple of the
standard deviation" (see 4.3.4 in [6]). Then an aim of an inter-comparison is to combine
the input data in the labs to characterise a representative value of the inter-comparison,
i.e., the random variable 0 and its pdf F. Hence a good estimate of the 95%CI for 0 can
be obtained if the output pdf F is a simple known function, describing the stochastic
variability of the inter-comparison data. In other cases a suitable approximation of the
expected value EF[X] = f xdF(x) could be accepted to output the reference value x,.
The inter-comparison data structure is summarised here in terms of interval estimates:

INPUT Sample - Each one of the N participants orijinates a 95%CI that is one
element of the inter-comparison sample: : /

/
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Here no value xi in the interval [uil, uiu] is chosen as representative; possible information
on Fj (such as limited or unlimited support, symmetric or not) should be added. If a
laboratory does not supply any information on the pdf, the uniform distribution is
assumed.

Comparison OUTPUT - It includes the representative value and its 95%CI

0, [f, CO. (2.2)

In many inter-comparisons, the differences to 0 are also defined: (y1 , [wil, wi,]), where
yi = xi - 6, i = 1,... ,N.

3 A classical approach to inter-comparisons

Let us recall the solution to the inter-comparison problem through the traditional estim-
ator, the weighted mean. It is a location statistic that combines several measures and
their standard uncertainties (xi, u) . It provides the following estimate for 0,

N (

0" = ~ , ( 1 -3.1 (3.1)
j=ij 3j=

and the following symmetric 95%CI,

Ow ± ku,,, (3.2)

where the coverage factor k is taken as the value t
N-1,O.95 of the Student distribution, N

being small. In this approach, each xi is viewed as an unbiased estimate of the laboratory
mean value and the random variable 0, is defined to be a linear combination of N inde-
pendent random variables X1 .... , XN, where {xj,... , XN} is an observed sample. 0", is
supposed to be asymptotically normally distributed [6]. This estimator can be correctly
adopted to solve an inter-comparison problem if the assumption of the homogeneity of
the data is valid. This is equivalent to saying tlhat, after considering the extent of the
real effect and bias in each laboratory, the laboratories yield on the average the same
value, so that the differences between the estimates are entirely due to random error.
In this case, the selected estimator 0,,, appropriately estimates 0 and (3.2) accurately
estimates its 95%CI.

Obstacles to applying this approach to a key-comparison have been discussed in [3].
The "credibility" of the representative values xi, and of their uncertainty can critically
affect the accuracy of the estimate of the representative value xr. Moreover, the peculiar
characteristics of a typical inter-comparison sample ((1) its very limited size, from a
statistical point of view, (2) different experimental methods, used in each laboratory)
often imply that the statistical assumptions are not satisfied, as for example in several
thermometric cases. Indeed, the first characteristic implies that the Central Limit The-
orem and the asymptotic theory do not hold. Then the normal distribution cannot be
properly used to infer the estimates in (3.2).

Another example of the inadequacy of the weighted mean approach is when some
laboratories provide data affected by bias, resulting from skewed distributions underlying
their measurements. The symmetric confidence interval of (3.2) cannot be considered an
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accurate approximation1 of the true one, since it does not adjust for the skewness. Finally,
it is necessary to point out that the homogeneity condition among the laboratories must

be assured in some sense, otherwise it would be impossible to attempt to the computation
of any summary estimate and its associated uncertainty.

4 The approach based on interval data

4.1 The mixture density function

This paper proposes to construct a simple model for the output pdf, and to estimate
its expected value 0 without requiring strong assumptions such as N large or each Fi
normal. This approach enables us to compute the probability interval of the output
value in terms of the identified density in each laboratory. The stochastic variability of

the population of inter-comparison data is directly considered in the modelling approach

as a whole, by means of a so-called mixture distribution model [5]. This model, being
a linear superposition of several (say N) component densities, appears to be suitable
from a computational point of view and can be embedded in a bootstrap algorithm to
simulate several data needed to predict the output quantities.

In an inter-comparison, let us suppose that a density function fi(x; AM )) is assumed

for the i-th laboratory, then the following density mixture is identified to model the
output pdf, where the parameter vector is A = (A(-),... , A(N)) and given weights 7ri>

0, i =1,... N, have summation normalised to one:

N

g(x; A) - Elrifi(x; A(i)). (4.1)

To compute the output as estimate of the expected value of the mixture, 0 = EG(A) [X],
the probability function G(A), corresponding to the density in (4.1), must be known.

When some laboratory provides only partial information on a pdf, we propose to identify
its experimental variability by one of the following simple probabilistic models: uniform,
normal or triangular pdf (right or left or symmetric triangular). Indeed, in thermometric
experiments these three probabilistic models can represent several common stochastic
variabilities for measurements, such as a limited or unlimited support, symmetric or not.

We want the mixture parameters to be estimated by means of the INPUT Sample,
(2.1), as required in a bootstrap approach. Let us call I the probability interval to which
the 100% measurements of the laboratory are supposed to pertain. For the uniform and
the triangular types, A(M) parameters are defined to be the extremes of 1i = [Ail, Ai"]. For
the normal model the parameters are the mean xi and the variance ui, while I becomes

A right triangular pdf (RT), a left triangular pdf (LT) or symmetric triangular pdf
(ST) is chosen according to the position where the maximum of the probability density
occurs, i.e., one extreme or the middle point of I.

'A 95% CI [fj, E.] for 0 is defined to be accurate if the following holds for every possible value for 0: ProbG {0>
E } = 0.025 and ProbG{9 < ej} = 0.025
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To compute the two components of the vector A) = (Ail,, Ai,)T given the i-th input
interval, a 0.025% portion of probability mass is added outside of each extreme, according
to the supplied density shape. For example, if the ST density is chosen, the parameters
are computed by:

Ail = (0.89uil - 0.11ui,,)/0.78 Ai,, = (0. 8 9ui,, - 0.11uil)/0.78.

The mixture weights could be used to associate a degree of "credibility" to each
laboratory. Then the choice 7ri = 1/N, i = 1,... , N, implies that every laboratory equally
contributes to the inter-comparison.

When the mixture G(A) is completely identified, it can be used to simulate data and
to approximate the output value in the Monte Carlo algorithm.

4.2 The bootstrap algorithm

To avoid integral computations to estimate 0 and its variance, the Monte Carlo method
is commonly used to approximate them within a given precision. Since the parametric
bootstrap approach does resampling from a parametric distribution model, in this case
the mixture model G(AL), is adopted to approximate the following distribution,

H(x) = Prob {0* < x}. (4.2)

The Monte Carlo method simulates a sufficiently high number B of data 0* from G =

G(A), to compute,

B

H(x)(B) = 1 < x, (4.3)
b=l

where the function H{A} is the indicator function of the set A. With probability one, it is
known that the Monte Carlo approximation converges to the true value as B -• oc. The
Monte Carlo algorithm has been developed for a mixture density to estimate the com-
parison output. A hierarchical resampling strategy is used to reproduce the hierarchical
variability in the inter-comparison population, throughout the following steps:

(1) (a) Choose at random an index, say k, of k-th laboratory by randomly resampling
with replacement from the set {1, ... , N}

K ,,- Prob{K = k} = 7ri.

(b) Given k, generate, at random from the selected FA. of the distribution, a boot-
strap value 0* in [Akl, Ak,].

Repeat Step 1 B times to simulate the fill bootstrap sample 0*,..., 09.
(2) Approximate the bootstrap mixture distribution as in (4.3) to compute:

the bootstrap estimate of the expected mean
B

b(4.4)
b= 1
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Labl (-0.05; 0.15) [-0.347, 0.247] Lab2 (0.03; 0.30) [-0.564, 0.624]
Lab3 ( 0.18; 0.15) [-0.117, 0.477] .Lab4 (0.04; 0.15) [-0.257, 0.337]
Lab5 ( 0.71; 0.15) [0.413, 1.007] Lab6 (-0.01; 0.15) [-0.307, 0.287]
Lab7 (-0.03; 0.15) [-0.327, 0.267]

TAB. 1. Inter-comparison of 7 laboratories [7]: point estimates and simulated in-
terval data.

1 B )1/2• -

- the bootstrap standard deviation: Sd ( 1 (, q)2

the 95%CI [c*, c*], where the two extremes are computed as the a-th quantile
(a = 0.025) of the bootstrap distribution HBB0  (a))-1 = q*0 , hence e-=1q

and •* B

In Step 1b) the inverse transformation method has been used for simulating a ran-
dom variable X having a continuous distribution Fk. For example, X = F,-7(U), for a
U(AkI, Aku) random variable. In Step 2 the bootstrap CI has been computed by means of
the percentile method (see footnote). However, when the normal distribution is involved
in the mixture, the t-bootstrap method gives more appropriate results [4]. To determine
B in approximating the bootstrap confidence interval the coefficient of variation [4] can
be used. The value of B is increased until the coefficient of variation cv of the sample
quantile approaches the given precision 60. Indeed, from a metrological point of view, it
appears easier to choose 60 instead of B as stopping rule in Step 1.

We would like to have also an automatic tool to investigate how well every laboratory
contributes to the comparison, or to detect the possible presence of heterogeneous data.
Here the concept of jackknife-after-bootstrap has been adopted to compute the mean
and the bootstrap 95%CI. It is simply obtained by the following algorithm:

- for i = 1, ... , N, leave out the i-th lab and compute O (-i) and q*(-i),

- compare the N jackknife estimates to detect outlier values.

5 An application in thermometry

The proposed method is shown applied to an inter-comparison of Temperature Fixed
Points, involving N =7 laboratories [7]. Each lab provided data xi with the 95% standard
uncertainty (Table 1: first item).

The second item (square brackets in the same table) represent the interval data
generated with (3.2), that used to perform this simulated example. Since no specific
pdf was supplied, the mixture distribution density has been constructed assuming the
uniform type for each participant and equal weights. The parameters of every uniform
density was computed using interval data, and the obtained mixture density was used
in the resampling step of the algorithm to compute the representative value and its

2 The percentile method of a statistics 0, based on B bootstrap samples, simply gives for a a-percentile q*& =

{(aB)th largest for O*}
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Mixture of 7 Uniform densities Mixture of 6 Uniform and 1 RT densities
S=2209 8=2209

201.0 201.0

151.0 151.0

101.0 '510.

101.0 61.01

1.0 1. . . . .91.01 .

-0.5 15 -2.5 O' 15

FIG. 1. Bootstrap histograms B =2209: left-mixture of 7 uniform distributions; right-
mixture of 6 ST plus one RT density for Labi.

probability interval with 60 = 0.05. In Figure 1 (left) the bootstrap histogram, that
approximates the mixture density, shows a bimodal behaviour. The computations are
obtained for 6o = 0.05 or B = 2209: 9" = 0.14, bootstrap standard deviation Sd*=0.33,
95%CI [-0.35, 0.92].

The proposed algorithm was also applied with a mixture of seven normal densities,
and the results are 0* = 0.13, Sd* = 0.43, bootstrap 95%CI [-0.61, 1.1] for B =4752. The
effect of assuming unlimited symmetric distributions to model the output pdf results in
a wider 95%CI for a mixture of normal densities.

By comparing the jackknife results in Table 2, Lab5 appears to supply unusual values.
To directly consider this behaviour in the inter-comparison, a mixture of six uniform
densities plus a RT density, identifying Lab5, has been constructed. The approximated
bootstrap distribution is displayed in Fig.1 (left), with bootstrap estimates, 9* - 0.15,
standard deviation Sd* = 0.35 and [-0.35, 0.96] for the Bootstrap 95%CI, obtained for
B = 2209.

6 Conclusions

The problem of the inter-comparison data has been described, and a new approach has
been proposed. It is based on the uncertainty estimates, that should be provided by each
Laboratory as interval estimate at 95% confidence level together with information, also
partial, on the probability function. The constructive procedure directly characterises
the stochastic variability of the reference value of the inter-comparison, by means of a
mixture density model. The result of an inter-comparison is then viewed as a random
variable, not directly measured, being the output of a complex process, that involves
measures, statistical information and metrological considerations. These considerations
suggest us constructing a mixture, with weights. 7ri to take into account each participating
laboratory according to its credibility.

JJ
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Labl 0.34 [-0.45, 0.92] Lab2 0.32 [-0.31, 0.94]
Lab3 0.34 [-0.40, 0.91] Lab4 0.34 [-0.35, 0.92]
Lab5 0.23 [-0.42, 0.48] Lab6 0.34 [-0.36, 0.95]
Lab7 0.34 [-0.42, 0.92]

TAB. 2. Jackknife-after-bootstrap estimates. Standard deviation and 95%CI for
mixture of 6 uniform densities (B = 1000): in the ith item, Labi is left out.

The parametric bootstrap approach has been adopted to estimate in a simple and
automatic way the inter-comparison output, where information, even partial, on the
probability hierarchical data of the participating laboratories, have been taken into ac-
count.

Also with a limited number of laboratories, the method can be applied, as it is shown
in the thermal example, where (N = 7) and the experimental conditions implied to adopt
skewed distributions. The automatic jackknife method of detecting the heterogeneous
data succeeded in revealing an unusual value. To take into account this condition, a
mixture of six uniform densities plus an RT density to identify Lab5 could be better used.
The choice of equal weights emphasises that all the standards have equally contributed
to the inter-comparison.

The bootstrap procedure, completely developed for a class of five simple distribution
functions often used in thermal metrology, could be adapted to consider other distribu-
tions, when the synthetic data information provided by the laboratories, as summarised
in Section 2, allow to compute the mixture parameters.
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