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Abstract

At present the use of hypercomplex methods is pursued by a growing number of mathem-
aticians, physicists and engineers. Quaternionic and Clifford calculus will be applied on
wide classes of problems in very different fields of science. We explain Maxwell equations
within the geometric algebras of real and complex quaternions. The connection between
Maxwell equations and the Dirac equation will be elaborated. Using the Teodorescu
transform we will deduce an iteration procedure for solving weak time-dependent Maxwell
equations in isotropic homogeneous media. Assuming the so-called Drude-Born-Feodorov
constitutive laws Maxwell equations in chiral media were deduced. Full time-dependent
problems will be reduced to the consideration of Weyl operators.

1 Historical oriented introduction

Classical Maxwell equations were discovered in the second half of the nineteenth century
as result of the stormy development, of electromagnetic research in that time. The study
of these equations has attracted generations of physicists and mathematicians but some
of their secrets are still hidden.

At about the same time, also new algebraic structures were invented. W.R. Hamilton
discovered in 1843 the algebra of real quaternions as a generalization of the field of
complex numbers. Under the influence of H. Grassman's extension theory and Hamilton's
quaternions, W.K. Clifford created in 1978 a geometric algebra, which is nowadays called
Clifford algebra. Its construction starts with a basis in the signed R" = RPq with units
el ... ,e,n. Assume that, e? 1, for i = 1 ... , q, and e? =1, for j= 1...,p, as well as the
anticommutator relation

eiej + ejej = 0

for i 5 j. Together with e0 = 1 one can construct a basis in the 2" -dimensional standard
Clifford algebra Clp,q. Incidentally, in 1954 C. Chevalley [5] showed that each Clifford
number, i.e. each element of Clp,q, can be identified with an antisymmetric tensor.

Let us go back to the electromagnetic field equations. Already J. C. Maxwell [15]
himself and W. R. Hamilton [10] used these new algebraic techniques to try to simplify
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Maxwell's equations. The aim was to obtain an equation of the type

Du + au = F

with suitable operators D and a. For this reason Hamilton introduced his "N'abla oper-
ator" as well as the notion "vector". The tendency of algebraisation of physics continued
in the first half of the last century. A long list of important publications were devoted
to this topic. We only stress here some of the milestones, beginning with the "Theory
of Relativity" by L. Silberstein (1914)[18] , and H. Weyl's book "Raum-Zeit-Materie" of
1921. Important results of Einstein/Mayer, Lanczos and Proca followed. In 1935 this de-
velopment highlighted with the thesis of M. Mercier (Geneva) [16]. After the reinvention
of the concept of "spinors", firstly appeared in 1911 in a paper by E. Cartan, D. Hestenes
[11, 12, 13], F. Bolinder [3] and M. Riesz [17] wrote fundamental algebra papers with
applications in electromagnetic theory, using the framework of Clifford numbers and
spinor spaces.

Meanwhile, in the late thirties the famous Swiss mathematician R. Fueter and his co-
workers and followers used a function-theoretic approach for the same problems. These
ideas were refreshed and fruitful extented by R. Delanghe and his group and A. Sudbury
in the seventies and early eighties (cf. [4, 20]). Influenced by the success of complex
analysis and Vekua theory a generalized operator theory with corresponding singular
integral operators [19] and a corresponding hypercomplex theory for boundary value
problems of elliptic partial differential equations were developed [8],[9].

Making use of a transformation of Maxwell's equations into a system of homogeneous
coordinates we will propose an alternative solution method.

2 Maxwell equations
Let ,G be a bounded domain with sufficient smooth boundary F that is filled out with
an isotropic homogeneous material.

Using Gauss units Maxwell equations read as follows:

c rot H = 47rJ + atD (Biot-Savart-Ampere's law)

c rot E = -atB (Faraday's law)

div D = 47rp (Coulomb's law)

div B = 0 (no free magnetic charge)

Furthermore, the continuity condition has to be fulfilled:

div J = -Otp,

where E = E(t, x) is the electric field, H = H(t, x) the magnetic field, J J(t, x) the
electric current density, D = D(t, x) the electric flux density, B = B(t, x) the magnetic
flux density, p = p(t, x) the charge density, and c is the speed of light in a vacuum.

The relations between flux densities and the electric and magnetic fields depend on
the material. It is well-known that for instance all organic materials contain carbon and
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realize in this way some kind of optical activity. Therefore, Lord Kelvin introduced the
notion of the chirality measure of a medium. This coefficient expresses the optical activity
of the underlying material. The correspondent constitutive laws are the following:

D = e E + 0 / rot E (Drude-Born-Feodorov laws),

B = y H + p,3 rot H,

where e = E(t, x) is the electric permittivity, j = p(t, x) is the magnetic permeab-
ility and the coefficient 3 describes the chirality measure of the material. In isotropic
cases one has the possibility to use the so-called Tellegen representation

D =e + a H,

B= PH+a*E.

The connection between the electric field E and current density J is given by

J=aE+ag

where a is the electric conductivity and g a given electric source.

Starting with / = 0 and replacing D and B by D = e E and B = , H we get in the
case of

= e(x), tt = P4X)

-EtE+crotH = 4r J, (2.1)

patH+crotE = 0, (2.2)

EdivE = 4rp -(V -E), (2.3)

judivH -(Vt-H). (2.4)

After summing (2.1) and (2.4) as well as (2.2) and (2.3) we obtain

-EatE + c rot H + p div H =-(Vu -H) + 4r J, (2.5)

,u(tH + c rot E + E div E =-(VE H) + 47r p. (2.6)

In the case of e, p being constants we can introduce the new functions E, H which
are defined on a homogeneous space with a first coordinate x0 and the other coordinates

= (l, x2, ix3). We obtain:

E(t, x) E:/ t, 1C

- C) .
c

The equations (2.5)-(2.6) transform into

ajE + rot Ht/+ c div H = 47r J,

a1 //+ rot E+ec div = 47r p.
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3 Quaternionic representations

Let el, e2 , e3 be the generating units of the algebra of real quaternions R!, which fulfil
the conditions

ejej + eje = -26ij (i,j = 1,2,3).

This leads to the following multiplication rule for two quaternions u = uo +u, v - Vo+K:

uv=uovo-u.v+uov+vou+uxv (viER),

where u = ulel + u2 e 2 + u 3 e3 , v = vle 1 + v 2 e 2 + v3 e 3. Further, let u = uo + u be a
quaternion. Then U = uo - u is called to be its conjugate quaternion. The operator
defined by

D = alel + a2e 2 + a 3 e3

is called Dirac operator. It acts on a quaternionic valued function as follows:

Du - div u + rot u + grad uo .

With the multiplication operator me

mou = Ouo + u (0 G R+),

with u =u 0 +u, u-Ulel + u2 e2 + u 3e 3, we obtain

m,,(aiE + DH) = 47 J,

mC(OilH + DE) = 4i p,

and so

a1 +D = m-14i J,

at+DE =m-4r p.

Finally, we get

(+ft) =a (k + ) + D( + f-l) =4(m g+mEp)=:F,

-(E - H) = al(E - H) - D(E - H) 47r(mTjJ - m- 1 p) =: F2 ,

where a is also called Weyl operator and a is the conjugate to a. By the way, a function
u is called quaternionic regular if a u = 0 and quaternionic anti-regular if a u - 0.

For simplifying we set: F + H =: v and E - f =: w. Then it follows

aw = Fi(v,w), (3.1)

aw = F2 (v,w). (3.2)

Let us have a closer look at the functions F 1, F 2. The electric current density J is given
by

J-aE+c+ g,
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where E and g are vector functions. This leads to the following simplification

F1  47w[0( + g) + - 27r [r(v +wU) + g+ P1

F2 =47w [0,(k+ Og) - P 27w [0'(V +W) +9g-

Hence

F 2 = -F 1

Thus

0w = Fi(v,w), (3.3)

-Ow = --F(v,w). (3.4)

4 Integral representation
Let G be a bounded domain in R 3 and a a positive constant. We consider in R 4 the cyl-
inder Z = G x [-a, a]. A right inverse to the Weyl operator is the following Teodorescu
transform:

(Tzu)(x)= e(x-y)u()dy, Z=Gx [-a,a]
U73

z
with e(x) = " ax14 , 

0 3 = 2W3 / 2/F(3/2). We obtain in a straightforward manner
aT 1  u in Z,

ZU= 0 in R

and

u in Z,
Tz au + Oz a 0 in R 4

with Oz E ker 0. In complete analogy a conjugate Teodorescu transform T is introduced.
We just have to replace e(x) by its conjugate. Now it follows from (7)-(8) that

v = TzF1 (v, w) + bz ((90z = 0),

w = T;F2 (v, w) + ¢ , (DO- = 0).

Furthermore we have to introduce Cauchy-Bizadse-type operators, which are defined
by the boundary data. These operators read as follows:

(Fazu)(x) e(x - y)n(y)u(y)d(OZ)y (x € OZ)

Oz

and

(Fazu)(x) := J(x - y)n(y)u(y)d(OZ),, (x OZ)
U73

Oz

where n(y) = (no +n)(y) denotes the unit vector of the outer normal on OZ at the point
y.
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It can be proved that

0* = F~zw and Oz = Fzv in Z.

It should be noted that we do not need the whole trace of the functions w and v
on the boundary. We just have to consider these parts of trzv ( trzw) which are lying
in the corresponding Hardy space of functions, which permit a quaternionic regular
(quaternionic anti-regular) extension into Z, accordingly. We get the integral equations

v = 47rcTz(v+w)+47rTz(ag+ P) +h, (4.1)
c

w = 4roT(v+w)+47rT;(og- P)+h*, (4.2)

where

h = Foztrazv and h* = F Ztrozw.

If h, h* are known then under smallness conditions the iteration procedure:

= 4roTz(v-1 + w,-1) + 4wTz(ag + P) + h,
c

= 4rT (vn-1 + w-1) + 4rT;(ug - ) + h*,
c

with (vo = wo = 0) will converge in suitable Banach spaces.

Remark 4.1 In [1] is proved the following estimation:
2u

11T z 1L (L _ ,C ) _ -- a JG J.

5 Weak time dependent Maxwell-equations
Assume now c = (x),,u = ,(x),n = n(x) (g = 0) and

E(t, x) = Eo(t)E(x) and H(t, x) = Ho(t)H,(x),

where the scalar functions Eo and Ho are known. Maxwell equations then transform to

cE 0 rot E1  = -at(,iHo)Hi , (5.1)

c Ho rot H1  = (at(EEo) + 4iruEo)E1 , (5.2)

Eo(Vc. Ei) +E div E, = 47rp, (5.3)
(Vp .HI)+pdivH, = 0. (5.4)

It follows

rotE 1  = H, =. H aoH,
c Eo

rot H1  = ( otEo + 4 7!) El =:,oE1i,
CE c Ho

-div E, - 47rp + 7E El p'-!a.E,
EEO 6
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-div H1  = V±.H=_..H1 .P

Here a 0ao+a fg=/3o+l , a:=-_, f-:= Using the fact that in N

Du =-div u + rot u,

we get

DE1  = aOHj+p'-q-Ej,
DH1  = Oo0E 1 -,"H 1 .

The right inverse of D is the corresponding Teodorescu transform TG over G C R 3. A
short calculation leads to

E1 = TaoHi - TGo _ E, + Tp' + 01,

H1 = TGfoEi - TGO H1 + q2,

where 0i E ker D (i = 1, 2). The iteration method
n) = TG 1 E ) + TGaooH' n - 1 + TGP' + 01,

(n 1 Tflfl(n-)ff,E-n -~3 -G-H

with H(' ) = E(° >
- 0 converges in suitable Banach spaces (L2 , W2, C) under smallness

conditions.

In the time-harmonic case i.e. Ho = Eo - 1 and E, p, are constants and . = K(x) we
have

DE, = p' and DH1 = 0 El.

Setting 3o = 6- 1 we obtain

D JD H1 = 47rp = p,

i.e.

A H1 = -f.

If boundary values of H1 (trrH1 ) are known i.e. trrHi = g the complete solution is
given by

Hi = Frg + TGP6Dh + TGQ56TGf. (5.5)

Here Pb and Q are orthoprojections on subspaces in the quaternionic Hilbert space
L2 (G), namely

01
L2 (G) = 6 kerD n fL 2 (G) @ D W 2 (G).

6
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The scalar product is defined by

(u,v) := f6vdG E H.
G

The operator P6 can be seen as a generalized Bergman projection.
In the representation formula from above is Fr the Cauchy-Bizadse operator on F

and h a smooth continuation of g into G. Note that P6 and Q6 can be explicitly defined
(cf. [9])! Then

c

E1 = P6Dh + Q66TGf.

Let us prove that the boundary condition is fulfilled! Indeed,
01

Q&TGf = Df with f EW 2 i.e. trrf = 0.

TGDf = f - Frf = 0 (Borel-Pompeiu's formula).

On the other hand, Plemelj-Sokhotzkij's formulae yield:

trrHi = Prg + trrPbDh = Prg + trrTDh - trrTQ6Dh

= Prg+g-Prg+O=g.

Pr is the so-called Plemelj-projection onto that Hardy space of f/-regular extendible
functions into G.
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