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Systems of delay equations with small solutions:
a numerical approach

Neville J. Ford and Patricia M. Lumb
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Abstract
We consider systems of delay differential equations of the form

y'(t) = A(t)y(t - 1)

where y E R' and A : R - R"'. We investigate whether a numerical method can be
used to determine whether or not the equation has so-called small solutions. Our work
builds on recent analysis and experimental work completed in the scalar case and we are
able to conclude that, at least when A is a suitable periodic matrix, one can predict small
solutions by using a numerical approximation scheme of fixed step length.

1 Introduction and basic theory

The analysis of delay differential equations, both analytically and numerically, is well-
established. One distinctive feature is that even a scalar delay differential equation is an
infinite dimensional problem. For, if x satisfies

y'(t) = b(t)y(t - 1) (1.1)

the initial conditions that need to be specified take the form

y(t)= (V), -1<_t <_0. (1.2)

This infinite dimensionality has two significant implications for us:

(1) the dimension of a system of delay equations is the same Ms the dimension of a
scalar delay equation, and

(2) the range of dynamical behaviour among solutions of delay equations is far wider
than would be the case for ordinary differential equations.

In the present paper we are investigating an infinite dimensional property (that of pos-
sessing small solutions) where the analysis and results for systems needs to be presented
quite separately from those for scalar equations because there are some interesting and
distinctive features.

One way in which delay equations may be analysed is to view the solution operator
as a dynamical system. The dimension of the dynamical system then inherits the infinite
dimensionality of the delay equation itself. Small solutions (those that satisfy x(t)e' t --* 0
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as t -- o0 for all values of the parameter a) can arise in these infinite dimensional
problems but would not be observed in finite dimensional equations. They are important
because, when a delay equation has small solutions, the eigenfunctions and generalised
eigenfunctions of the solution map do not form a complete set. This means that some
standard analytical results do not hold and that particular care must be taken in solving
and analysing the equation.

The easy detection of problems that have small solutions is still, in general, open, but
we have seen [4, 5] that the use of a numerical approximation scheme can lead to good
insights. Here we approximate the delay differential equation using a simple numerical
scheme with fixed step length and then consider the spectrum of the resulting solution
map.

In recent work (see, for example [3, 5]) the scalar case has been considered with
some success. We have been able to see that, for the equation (1.1) with b periodic of
period 1, we can detect the existence of small solutions by exploring the (finitely many)
eigenvalues of the numerical scheme. We also found that it was not necessary to use a
sophisticated numerical scheme for the investigation and this has justified us in focussing
on the trapezium rule as the numerical method in this paper.

For the scalar case (1.1) it is known (see for example [4, 5]) that, when b satisfies the
periodicity condition b(t) = b(t - 1), then non-trivial small solutions arise if and only if
the function b changes sign. For the vector-valued case we can give a theorem, recently
proved by Verduyn Lunel ([11]).

Theorem 1.1 Consider the equation

y'(t) = A(t)y(t - 1), where A(t) = A(t - 1), (1.3)

and where y E R'. The equation has small solutions if and only if at least one of the
eigenvalues Ai satisfies, for some

RA (i-) x Ri (i+) < 0, Ai() = 0. (1.4)

Remark 1.2 We shall describe the property (1.4) using the words an eigenvalue passes
through the origin. We note that, even for real matrices A, the eigenvalues may be com-
plex and it could be that a pair of complex conjugate eigenvalues will cross the y-axis
away from the origin. In this case the equation has small solutions only if there is some
other crossing of the y-axis by an eigenvalue where the crossing does take place at the
origin.

2 Numerical methods and systems of order two

All the important relevant features of systems of delay equations turn out to be exhibited
in systems of two equations and so we shall focus on these for simplicity. We consider
the equation

y'(t) = A(t)y(t - 1) for A E R 2x2  and yE1R2. (2.1)

subject to y(t) = W(t) for -1 < t < 0 and we assume that A(t) = A(t - 1) for all t.
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We introduce

y(t) X2(t) A(t) y(t) 0(t) , 2 (t) (2.2)

We apply the trapezium rule with step length h = • and introduce the approxima-
tions xij P, x,(jh), and x2,j P x 2 (jh),j > 0; xijj = cpj(jh),x 2,j = 2 2(jh), -N < j < 0.
Set

Yn = ( xin,Xl,n-1,... ,X1,n-N)X2,niX2,n-1.'" ,X2.n-g )T. (2.3)

We note that, as in the one-dimensional case (see [3, 4, 5]), we can write the numerical
scheme as Yn+l = A(n)y,, where the matrix A(n) now takes the form

1 0 0 hL j h h h

2 2 2 0` 1. 2 0On~+
1 0 ... ... ... 0 0 ... ... . ... ... 0

0 1 .

0 ....... 0 1 0 0 .......... .... 0

A(n) jk......& .. ~ ,+1 h (2.4)0 ... ... 0 L•'n+l Ah7" 1 0 ... 0 6n*+

0 .... ... ... ... 0 1 0 ... ... ... 0

0 1

0 . .. ... .... ... 0 0 .... ... 0 1 0

The sequence of matrices {A(n)} is periodic, of period N (since the function A is
periodic of period 1) and Y2 = A(1)yl, Y3 = A(2)A(1)yl and so on. Therefore YN+I = Cyi

where C = A(N)A(N - 1).... .A(2)A(l).

Remark 2.1 The key to extending our discussion to larger systems, and indeed, to

gaining a full understanding of the approach, is to note that in both the matrix A(n) and

the matrix C the original block structure is retained. Therefore although the matrices
A(n) and C are considerably larger than the original 2 x 2 matrix A(t) in the problem,
they are made up of 4 blocks in a 2 x 2 formation. Indeed the contents of each block

is completely determined by our numerical method (the trapezium rule) and the values

of the corresponding function, respectively a, 3, -y, 6. There is no pollution of the blocks
from the neighbouring functions.

We consider three different cases:

(1) p3(t) = -y(t) = 0 so that the matrix A is diagonal,

(2) either 3(t) = 0 or -y(t) = 0 so that the matrix A is triangular, and
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(3) the matrix A is neither diagonal nor triangular.
The first two cases can be dealt with quite quickly because of the fact that real

diagonal and triangular matrices have only real eigenvalues and these eigenvalues lie on
the diagonal. Therefore in these two cases we need consider only the question of whether
the eigenvalues pass through zero; we do not need to concern ourselves with possible
complex eigenvalues whose real parts change sign away from the origin.

We can go further: a diagonal matrix A leads to a block diagonal matrix A(n) (with
non-zero blocks top left and bottom right). Now by simple matrix theory we know
that the eigenvalues of such a matrix are simply the union of the eigenvalues of the
two blocks. A similar argument applies when there is a triangular matrix A because
the matrices A(n) are then block triangular. It follows that, for both of cases 1 and 2,
the 2-dimensional eigenvalue problem simply reduces to two 1-dimensional problems.
Therefore, when we consider the eigenspectra of the numerical schemes in cases 1 and
2, we expect the result to be the superposition of the eigenspectra from the two block
matrices on the diagonal of C.

Case 3 is more complicated and we shall return to it after we give brief examples of
Cases 1 and 2.

3 How to recognise small solutions: our previous work

Space restrictions here prevent us from giving a great many details of our previous work,
but we provide a summary to show how the current investigation builds on the scalar
case. In [3] we considered the eigenspectra of the matrix C. We showed that there were
three characteristic patterns for the eigenspectra, represented by Figure 1. We take the
presence of the closed loops that cross the x-axis to be characteristic of the cases where
small solutions arise.

.0 ..- .. . . . . .

FIG. 1. Eigenspectra where b(t) has no change of sign on [0, 1] (left), where b(t) has a
change of sign on [0, 1] and fl b(s)ds = 0 (centre), and where b(t) has a change of sign

on [0, 1] and fl b(s)ds : 0 (right).

4 The cases when 0(t) = 0 and/or -y(t) 0

As we have remarked already, the eigenspectrum when A is diagonal or triangular is just
the same as the eigenspectra of the block matrices from the diagonal of C. We expect to
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find the eigenspectra superimposed, which is indeed what we see in the examples given.
Here we assume that at least one of -y(t) or 83(t) is zero; the plots are then independent
of the values taken by the other.

Example 4.1 We solve (2.1) with the choice a(t) = sin 27rt+1.4 and 6(t) = sin 27rt+0.5.
Here a does not change sign but 6 does change sign. We expect small solutions and Figure
2 provides confirmation.

Example 4.2 Now we solve (2.1) with a(t) = sin 27rt and 6(t) -0.3 for t E (0, 2],
E 0.7 for t (E,1].

This time both a and 3 change sign and we expect small solutions (see Figure 2).

FiG. 2. Eigenspectra for Example 4.1 (left) and Example 4.2 (right).

4.1 The general two dimensional case

We now move on to consider the case when neither of )3(t), -y(t) is identically zero. In
this situation the eigenvalues of A(t) can be complex and so may cross the y-axis away
from the origin.

First, we recall that det(A) is the product of the eigenvalues of A so that, by Theorem
1.1, it follows that det(A) = 0 is a necessary condition for small solutions. However this
condition cannot be used to characterise equations where small solutions arise; if the
eigenvalues of A are real and one passes through the' origin, then det(A) will change
sign. If the eigenvalues of A are a complex conjugate pair and cross the y-axis at the
origin then det(A) will instantaneously take the value zero but will otherwise remain
positive (the same behaviour as when a real eigenvalue becomes zero but does not change
sign). Therefore one cannot expect a change of sign in det(A) whenever there are small
solutions. The fact that the trace of A is the sum of the eigenvalues of A can be used to
characterise this case.

We summarise. For a real matrix A:

(1) if det(A) changes sign then there are small solutions,
(2) if det(A) becomes zero instantaneously and trace(A) simultaneously changes sign

then there are small solutions,
(3) if det(A) becomes zero instantaneously and trace(A) does not simultaneously change

sign then there are no small solutions indicated.
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Example 4.3 We first consider the case when the matrix A takes the form
A(t)= sin 27rt +a sin 27rt +b)

sin 2irt + c sin 27rt +d

By judicious choice of the constants a, b, c, d one can produce different types of be-
haviour. One can see that IA(t)I = (a + d - b - c) sin 2irt + (ad - bc). We will illustrate
with the following choices of the constants
Case 1: a = 1.5, b = 0.7, c = 0.5, d = 0.5 where the determinant changes sign,
Case 2: a = -2, b = 0.8, c = 1.8, d = 0.7 where, again, the determinant changes sign,
Case 3: a = 1.6, b = 0.8, c = 1.8, d = 0.7 where the determinant never becomes zero.

From the plots for cases 1 and 2, we can easily see the presence of small solutions in
the eigenspectra shown in Figure 3. In the Case 3, the eigenspectra in Figure 3 indicate
that, as expected, no small solutions are present.

2 ..

FIG. 3. Case 1. Case 2. Case 3

Example 4.4 Next, we consider the case when the matrix A takes the form

A(t) sin 27rt - (sin 27rt + b)
sin 2irt + b sin 27rt J

We choose the constant b in the following ways
Case 4: b = 0 so that det(A) becomes instantaneously zero at the same value that

trace(A) changes sign and the complex eigenvalues of A cross the y-axis at the
origin,

Case 5: b = 0.05 so that the complex eigenvalues of A cross the y-axis away from the
origin.

Here we can see that the characteristic shapes we familiar from our earlier work are
not reproduced and further investigation is called for. We remark that (in the zoomed
versions) the eigenspectrum where small solutions arise passes through the origin. This
property is reproduced also for all other examples that we have tried.
Example 4.5 Now we consider the case when the matrix A takes the form

A(t)= (ttb b
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.. ... .... .. ...... .. . .. .

FIG. 4. Left: Case 4. Right: Case 5 and (below) zoomed versions.

for t E [-0.5,0.5), A(t) = A(t - 1) for t > 0.5 then it follows that A has complex
eigenvalues that cross the y-axis at y = b when t = 0. We plot the eigenspectra for

Case 6: b = 0 so the eigenvalues of A cross the y-axis at the origin,
Case 7: b = 0.01 so the eigenvalues of A cross the y-axis away from the origin.

FI. . .CCowv

...

FIG. 5. Left: Case 6. Right: Ca~se 7 and (below) zoomed versions
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5 Conclusions
We have seen that it is easy to extend the detection of small solutions by numerical
methods from one-dimensional to two-dimensional problems where the eigenvalues are
real. Initial experiments indicate that the method works also for problems possessing
complex eigenvalues, but here the patterns that arise in the eigenspecra plots are unfa-
miliar and require further investigation. However, based on our experimental evidence,
it seems that small solutions arise in the latter case if and only if the eigenspectra plots
pass through the origin.
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