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Abstract

Let X := ([0, ro]), where ro represents the optical depth of a stel-
lar atmosphere. The weakly singular integral operator T : X---X defined by

(TW)(r) = for El(IT - r'l)p(r') dr',

where w e]0,1[ is the albedo of the atmosphere and E1 denotes the first
exponential-integral function, is such that ITh1  = z(1 - E 2(ro/2)), where
E 2 denotes the second exponential-integral function. If zv is close to 1, and
ro is large, then ITh1, is close to 1. In that case, the transfer problem

given fEX, find WEX such that Tp = W + f

is ill-conditioned, and the convergence of the fixed-point iteration 92k+1 = Tpk - f, which
is commonly used by numerical astronomers, becomes prohibitively slow. The purposes
of this work are to approximate W through different sequences whose terms solve well-
conditioned approximate equations, and to compare their efficiency and computational
costs.

1 Introduction

For a given r0 > 0, let g be a function defined on ]0, TO] such that

lim g(r) = +oo, (1.1)
-- 0+

g E C°(]0, roi) n L1([0, TO]), (1.2)

g(r) > 0 for all r E ]0, r0], (1.3)

g is a decreasing function on ]0, ro]. (1.4)

We consider the integral operator T defined by

(Tx)(T) := g(Ir - T'D)x(r') dr'. (1.5)

Theorem 1 T is a linear compact operator in L1 ([0, To]) and ITh1  2j g(r) dT.

Proof: See [2]. El
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For z in the resolvent set of T, we consider the Fredhoim equation of the second kind

T'o = zW + f. (1.6)

Applications will concern the function g : 10, TO] -4 R given by
g) = •El (r) (1.7)

00 exp(--T/')

where w E ]0, 1[ and E1 is the exponential-integral function: E, (T) = dbt,

T > 0. E1 is the first function of the sequence (E,),Ž1 , E,(7-) j/exp(--L d) ,

r > 0, v > 2, and it is the only one presenting a logarithmic singularity at 7- = 0.
Following Theorem 1, when g is defined by (1.7), we have IITII1 = S[1 - E2 (To/2)] < 1.

We recall that a bounded linear finite rank operator TY in a normed linear space X
can be written as

n

Tn := f•. n,i~en~j (1.8)

j=1

where n E IV"*, and, for j E [1 ,n], inj E X*, the topological adjoint space of X, and
enj E X.

The resolution of the approximate equation

Tnn = zn + f, (1.9)

where z belongs to the resolvent set of Tn, leads to an n-dimensional linear system

(An - zIn)xn = bn (1.10)

where In is the identity matrix of order n,
An((,j) :-- (enj, in,i), bn(i) := Yf, in,i), xn(): (ýPn, tnjý. (1.11)

Once this system is solved, the solution of (1.9) is given by

(n= z :x~je~ - f).(12j7=1

We are interested in refining approximations obtained with Tn := irnT, where 7rn is
a sequence of projections with finite rank n. A bounded projection 7rn of finite rank n is

n1
defined by 7rnx := • (x, e*'jen, for all x E X, where (en,j) 1 1 is an ordered basis of

j=l

the range of irn, and (e*,j)ý 1 is an adjoint basis of the former in X*. Hence
n

Tnx(:= -(Txre, , x E X. (1.13)
j=1

We suppose that irn is pointwise convergent to the identity operator in the Banach X
where the operator T is defined. Since T is compact, Tn converges to T in the operator
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norm. Let R(z) := (T - zI)-' be the resolvent of T at z. Then Rn(z) := (T, - zI)-1

exists for n large enough and is uniformly bounded, that is, there exists no such that

co(z) := sup IIRn(z)l < +oo. (1.14)
n>no

We develop an application in the space X := L'([O, 7-0 ]). Let ( nj)ý' be a grid on [0, 7o]
such that

0 =: Tn,O < Tn,1 < ... < Tn,,-I < 7n,n TO, (1.15)

and set

hj Tj- T-,j_ for j E [1,...,n]. (1.16)

We define, for T- E [0, TO],

enj(r) 1 if T E (Tnj-Wn,j) (1.17)
0 otherwise

and, for x E L1[0, o]),
rh l[n, j

(X , en j): frX(T') dT'. (1.18)
TnjJr J-1

The product defined in (1.18) is a special case of the scalar product used in equation
(1.8) when a grid such as (1.15) is set. In this case the operator in (1.13) is the operator
in (1.8) if we choose f,j = T'e* . Let

Smin{hnj : j E [1,... ,n]}, h, := max{h,,j : j E [1,... ,n]}, qn , '(1"19)•h,

For quasi-uniform grids, there exists a constant q independent of n such that, for all n,
q < qn. For uniform grids, qn = 1 for all n.

Theorem 2 Let p 54 0 be the solution of (1.6) with T defined by (1.5). Let •, be the
solution of (1.9) with Tn defined by (1.8) and (1.15)-(1.12). Then, for n large enough,

(P N 1P. < q) jg(T) dT, (1.20)

where co(z) is given by (1.14) and computed with the 1-norm.

Proof: See [2]. 0

In the case (1.7), the matrix A, of the linear system (1.10) has entries

Ah(i,j) := E(I(T - T'I)e,,j (') dT'd'r, (1.21)

and the second member bn has entries

bn(i) :T Ei(IT - r'l)f(r') dT'dr. (1.22)
2h njýi--10
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For more details, see [3]. An application to the transfer problem in astrophysics gives
(1.6) with z = 1, and as free term,

S-1 if 0 < T < T0/2, (1.23)
0 if 7-0/2 < T < To,

which describes a sudden drop of the temperature on the r = TO/2 layer of the atmo-
sphere. For further details on the physical model, see [4].

2 Iterative refinement of approximate solutions

To attain a given precision on the approximate solution •o,, it may be necessary that the
largest grid step h, be so small that the dimension of the corresponding linear system
will be prohibitively large from a computational point of view. Not only the algorithm's
stability becomes poor but also the condition number of the matrix may increase if its
size increases. Refinement schemes allow us to attain iteratively the exact solution of a
large scale linear system by means of the resolution of a sequence of linear systems of
moderate fixed size. Let us consider the general framework of a complex Banach space
X and a linear compact operator T : X -4 X. If z is in the resolvent set of T, then
z 0 0. Let T, be a sequence of linear bounded operators in X such that lIT - TI I --- 0
in the operator norm. Then, for n large enough, z belongs to the resolvent set of T, and
Rn (z) is norm-convergent to R(z).

The most elementary way to refine the approximate solution ýo,: R•(z)f is the
following.

SX(0) W=•n,

Scheme A { x(k) - Rn(z)(Tx(k) - zx(k) f), k > 0. (2.1)

We can interpret Rn(z) as an approximation of the inverse of the Fr6chet derivative of
the affine operator x ý-* (T - zI)x - f, the exact one being R(z). Since R(z) satisfies the
identities

R(z) = (R(z) T - I) = -(T R(z) - I) (2.2)
z z

two new different approximations of R(z) are thus motivated,

Rn(Z) -(Rn(z)T - I), R,(z) -(TR,(z) - I). (2.3)
z z

These approximate resolvent operators lead to the following iterative refinement schemes,

Seo) B=k((z)f,
Scheme B (2.4)

y(k+l) :. y(k) k Rn(z)(Ty(k) _ Zy(k) f), k > 0,

Scheme C (2.5)
2(k+l) : 2 (k) _ (Z)(T•(k) _Z2(k) _f), k _> 0.
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Since the computation of residuals which tend to zero, as well as the resolution of almost
homogeneous linear systems may be unstable, the following theorems are interesting for
algorithmic purposes.

Theorem 3 In (2.1), X(k+l) = x() + Rn(z)(Tn - T)x(k) for k > 0.

Theorem 4 In (2.4), i(k+l) = Y(o) + 1Rn(z)(Tn - T)Ti(k) for k > 0.
z

Theorem 5 In (2.5), ý(k+l) = •(0) + 1TR,(z)(Tn - T)5(k) fork > 0.
z

Proof: For each k > 0, in (3),

x(k+l) = x(k) - Rn(z)(Tx(k) - zx(k) _ f)

= x(k) - Rn(z)(T - T, + Tn - zI)x(k) + X(°)

= x(O) + Rn(z)(T, - T)x(k)

For (4) and (5), the proof follows the same idea but it is technically more complicated.
[]

In our application to the transfer equation in astrophysics, T is defined by (1.5) with
g given by (1.7), and the equation (1.6) has z = 1.

3 Numerical computations

The iterative refinement schemes allow us to obtain the exact solution of a large scale
linear system by solving a sequence of moderate fixed size ones. Each of the three iterative
refinement schemes presented in this work are based on an approximation, say Gn(z),
of the resolvent operator R(z). Their common structure is the following.

C•(0) := G.(z)f, (3.1)

6(k+l) : (O) + (I- Gn(z)(T - zI))•(k), k > O.

Theorem 6 Let cl(z) 8co(z) max{1l, IT111 /IzI }, and (&(k))k>O be any of the sequences
(2.1), (2.4) or (2.5). Then

11&k) - o _11 < (cl(z) jhrg(-)dr)k+I k>0.
Ik ~p lL -- a J 0 -

Proof: Let us prove the bound for the sequence defined by (2.1). For the other two,
the arguments are similar. Using Theorem 3, we have

x(k) - W = (Rn(z)(Tn - T) )k(x(°) -_ ),

X(°) - w = Rn(z)(T - Tn)ýp.

Hence,
11X(k) _ Wjjý -< II(Rn(z)(T - Tn))k+1jjj llpjjý,

and, in [2], we have shown that IIR.(z)(T. - T)II, < 8co(z) hn gg-r) d-. 0

All the schemes need evaluations of T at some prescribed functions of X. In practice
T is not used for this purpose but an operator Tm, of the sequence (T,),> 1 is used instead,
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where m > n. We consider the kernel g defined by (1.7) and the free term f defined
by (1.23). Table 1 gives the number of iterations performed by each scheme for several
values of w in order to obtain a first relative residual less than or equal to 10-12, when
a quasi-uniform grid (rT,i)Vo is built such that v, is a multiple of 10, ro = 1000,

if i E
2v5

TO
if i E [L +

n= 200, m =1000, and h,,: (3.2)

Sif

47" if iE[2+1,...,v].

Albedo Scheme A Scheme B SchemeC
w (2.1) (2.4) (2.5)

0.750 29 15 14
0.990 46 27 26
0.999 385 196 195

TAB 1. Number of iterations.

Figures 1, 2 and 3 show the last iterate of all schemes, as well as the corresponding
convergence histories, for w E {0.750, 0.990, 0.999}. As we can see, the schemes B and
C are much faster than Atkinson's formula A, specially when the albedo is close to 1. In
the latter situation a wider boundary layer arises at the left of the atmosphere, and the
decay at the middle point takes place along a wider subinterval.

A survey on different discretization methods for integral operators can be found in
[1], with special emphasis on spectral applications. In what concerns condition number
of associated linear systems, the reader is refered to [7], [5] and [6].
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FIG. 1. Solution and convergence history for w = 0.750: Scheme A - dashed line,
Scheme B - dotted line, Scheme C solid line.
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FIG. 2. Solution and convergence history for w = 0.990: Scheme A - dashed line,
Scheme B - dotted line, Scheme C - solid line.
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FIG. 3. Solution and convergence history for w = 0.999: Scheme A - dashed line,
Scheme B - dotted line, Scheme C - solid line.


