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Abstract

An algorithm is described for smoothly filling in a polygonal hole in a surface, with a
parametric uniform Powell-Sabin spline surface patch. It uses interpolation and subdi-
vision techniques for iteratively determining an approximating solution. No assumptions
are made about the surrounding surface. The user has to provide routines for calculating
the curve points and the unit surface normal along the edge, as well as the unit tangent
vector of the edge curves, parametrized on the unit interval.

1 Introduction

A classical problem in CAGD is to fill in a hole, bounded by a set of surfaces. This
problem has already been addressed in the literature (e.g. [1, 2, 4]). In most cases,
assumptions are made on the bounding surfaces. In this paper, we present an algorithm
for filling in a 3, 4, 5 or 6-sided hole that makes no assumptions on the surrounding
surfaces, and therefore it is generally applicable. On the other hand, the filling patch
will meet the given boundary curves approximately. The input of our algorithm (see
Figure 1) consists of the boundary curves p which join at their endpoints. Furthermore,
the user should provide the unit tangent vector I7 to the boundary curves at any point,
and the unit normal vector fi to the surrounding surface at any curve point except the
endpoints, where the tangent vectors of the joining curves are needed only (see Figure
1 again). For other (interior) curve points, our algorithm will calculate a unit vector
ý = fi x 1, which will be called the (unit) cross-boundary tangent vector. It shall be
referred to as if it were provided by the user. We will calculate a filling surface patch
that interpolates the user supplied boundary curves and has the same surface normal in
a number of points. This will leave us some degrees of freedom, which we will use to fit
the curve and the cross-boundary tangent vector in between each pair of interpolation
points. In section 2 we briefly recall the basic properties of uniform Powell-Sabin splines.
Section 3 explains how we can benefit from these properties to use UPS-splines for the
polygonal hole problem. Section 4 explains our algorithm in detail. Finally we remark
that on the pictures, we will denote 2D and 3D entities interchangebly; therefore most
pictures reflect the situation only schematically.
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FIG. 1. User supplied data.

2 Uniform Powell-Sabin splines

This section recalls the main properties of Uniform Powell-Sabin splines. For details,
we refer to the original papers [3, 5].

By S2 (A*) we denote the linear space of uniform Powell-Sabin splines (in the sequel
called UPS-splines), i.e., piecewise quadratic polynomials on a uniform triangulation A
(which means that all triangles are equilateral and have the same size) of a polygon Q,
where A* is a PS-refinement of A. The boundary of Q will be called 6Q, whereas the
boundary of the triangulation will be referred to as 6A. The vertices of A are denoted
Vi,i = 1,...,n, and its triangles are pi,i = 1,...,m. These splines have global Cl-
continuity on A*. Any s(u, v) has a unique B-spline representation

n 3

s(u,v) = E ci,jB (u,v), (u,v) E fl, (2.1)

i=1 j=1

where the locally supported basis functions form a convex partition of unity and cij E R3

are the control points. It follows that s(u,v) belongs to the convex hull of {ci}ji,,.
Furthermore, one can prove that the control triangles, being defined as Ti(ci, 1, ci,2 , ci,3),
i = 1,...,n, are tangent to the surface at s(Vi). Due to the local support of Bj, a
change to cij will only affect s(u, V)[Mi, i.e., the restriction of s(u, v) to the molecule
of Vi, being the set of triangles pj that have Vi as a vertex. This indicates that we
have a useful representation for Cl-continuous surfaces, without being restricted to a
rectangular domain, and still enjoying the interesting features of the classical B-spline
representation for tensor product splines.

2.1 Subdivision

In [5] we present a subdivision scheme for UPS-splines. Let A, be a uniform refine-
ment of A, obtained by midedge subdivision. For a given s(u, v) on A, the representation
(2.1) on Ar can be calculated using convex barycentric combinations of the control points
only. First, a new control triangle along each edge VlVj is calculated as illustrated in
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FIG. 2. Subdivision and BWzier points.

Figure 2, left, for the bottom edge of a triangle pi(Vi, VJ, Vk) E A:
SC1 = I(Ci,2 +_ Ci,3)f +

C2 = cj, + (c,,2 + cj,2) (2.2)
Sc3  =--- 1Cj,1 + 4(Ci,3 + Cj,3)-

Next, the control triangles at the original vertices are rescaled: for example,

C! 1 -Cij ~+ 6(C1,2 +±Ci,3 )
1:2  = j, 2 + "(Ci,3 + ci,1 ) (2.3)

,3 = = Ci, + l(C, 1 +6 - Ci, 2 ).

They are still tangent to the surface at their barycenter, but their area is only a quarter
that of the former control triangles. Therefore they connect tighter to the surface.

2.2 The piecewise B6zier representation

Another important property of the B-spline representation for UPS-splines, is that
the piecewise B6zier representation can be calculated from (2.1) using simple convex
barycentric combinations of the control points. In particular, focus an edge ViVj of A
(see Figure 2, right). The B6zier points of the edge curve can be found from:

s(Vi) =-Pi = 1(Ci,1 + Ci, 2 + Ci, 3 ), s(Vj) = pj = 1((Cj, + Cj,2 + Cj,3), (2.4)
33

Ui = (Ci,2 + Ci, 3 ), Uj = 2 CJ, 1 (Cj,2 + Ci,3), rij - •(ui + uj). (2.5)
+ 3 (J, + c2- + ~

This is a piecewise quadratic B~zier curve, which means that pi, rij and pj are surface
points, and that ui - pi and pj - uj are tangent to the surace at pi, resp. pj. Assuming
a (counterclockwise) ordering of the boundary vertices Vi E 6A, the edge curve from
s(Vi) to the next adjacent point s(Vj) will be denoted ei(u, v).

3 Application to the polygonal hole problem

Recall that our goal is to calculate a UPS-spline filling a hole in a surface, given by a
set of bounding curves (denoted p), their derivatives 7 and the cross-boundary tangent
vectors 6. The UPS-patch will fit these curves approximately along its boundary. In the
first place, interpolation of the given data at the vertices Vi E 6A is achieved. This leaves
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FiG. 3. Tangent and cross-boundary tangent vectors.

some degrees of freedom allowing to fit the given curves. In the sequel we shall denote
the user supplied data, evaluated at Vi, by (pi, ;s , ýi).

3.1 Interpolating UPS-splines and degrees of freedom

In order to obtain interpolation we determine a control triangle Ti in the tangent plane
spanned by pi + e5ýj + v3i, f, v E R, such that s(Vi) = pi. Curve point interpolation is
simply expressed by (2.4). Furthermore, we let the tangent to ei at Vi be parallel to ji:

1 1
Ui - Pi = -(Ci,2 + Ci,3) - -ci,1 = ai•, (3.1)

where ai is a scaling factor. Next, we need the cross-boundary tangent vector of s(u, v)
at Vi to be parallel to ci. Mapping the cross-boundary vector din the domain plane (see
Figure 2, right) onto the control triangle yields a vector parallel with c1,2 - ci,3:

C,2 - Ci,3= 2,3i~i, (3.2)

where /3i is again a scaling factor.

Solving (2.4), (3.1) and (3.2) to ci,j in terms of the unknown ai and Oi (further called
the a- and /3-factors) yields

Sci,1  = pi - Oi;ýi

jC,2 Pi + "i + 0A61 (3.3)

co = Pi + -Yii i .

These equations ensure that s(u, v) interpolates the given data at Vi E 6A, and leaves
us two degrees of freedom per vertex (ai and )3i). These scaling factors are related to
the size of the control triangle. For example, subdivision by (2.3) divides ai and /3, by a
factor of 2.

3.2 The fitting equations

We will now use these degrees of freedom to fit the user supplied data, in between each
pair of adjacent interpolating vertices Vi, Vj E 6A. First, the a-factors at V, and V- are
determined by trying to interpolate the curve p at the edge midpoint Vj = (Vi + Vi).
From Section 2.2, the interpolation condition reads rij = 2 (ui + uj) = pij, where pij
is the given curve point. Taking (2.5) and (3.3) into account, we have

aili - jyj= 4 pi,j - 2 (pi + pj) = qij. (3.4)
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FIG. 4. Consecutive iteration steps.

This is a system of 3 equations with (at most) 2 unknowns. It can be solved in the least
squares sense.

Next, the f-factors at Vi and Vj are obtained by fitting the cross-boundary tangent
vector at Vj. First, we derive a subdivision rule for the f-factors at the vertices of A
from (2.2) and (3.2):

- + f 4), (3.5)

where is the cross-boundary tangent vector to s(u, v) at Vij. This fl,j-factor belongs
to a finer subdivision level then fOi and flj, so we have to scale it up by a factor of 2. The
interpolation condition then is

S= 
(P A + fO j). (3.6)

Note that ,jj has been used instead of Xý,.. This is again an overdetermined system
which can be solved in the least squares sense.

4 The algorithm

We will restrict the figures illustrating the algorithm to the case of a triangular hole,
although the algorithm is immediately applicable to cases with 4, 5 and 6 boundary
curves as well (see Section 4.4).

The idea is to calculate, during a pre-iteration step, an initial solution which is smooth,
but in general not close enough, and to refine this approximation iteratively to obtain
a better fit to the given curves until a certain stopping criterion is satisfied. Finally,
during a post-iteration step, the interior control triangles are calculated, actually filling
the hole. Figure 4 illustrates this: imagine a pre-iteration step, two refinement steps and
a post-iteration step. The control triangles added during a particular step have been
shaded.

4.1 An initial solution

The initial solution (Figure 4, leftmost) is easily obtained by solving (3.4) in the least
squares sense for each edge ViVj. If we assume that ji - •j, then

1
i - ((ji" qij) - ('j"- qij)(-•7 " j)), (4.1)
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1
aj -- -- qj) + qij) 1J)), (4.2)

where D = 1- ( "j) 2• This yields two a-factors per vertex: one for each boundary edge
being incident to that vertex. Therefore, Ti is completely determined. The fl-factors can
be calculated by writing (3.3) for both edges incident with the vertex and eliminating
c2 , respectively cl, e.g., for Figure 3, right,

S0i = a2(1•2.5 1), 32 a -1i(11 -X2). (4.3)

There exist pathological cases where §12 _L X or 11 _ X2. Our 'algorithm then sets
0l = a,, resp. 32 = a 2 . For the case yi= 1j, (3.4) has no solution in the least-squares
sense. Assuming that si is a straight line from s(Vi) to s(Vj), the a-factors can then be
determined from the projection onto the domain plane, where the size of the so-called
PS-triangles (the projections of the control triangles) is fixed. The reader can verify that
this yields ai = aj= ViV

4.2 The iteration step

First the control triangles from the previous steps are rescaled by subdivision. This is
simply done by scaling down the a- and fl-factors: ai - and 3i -- -, for each
Vi E JA. Next, a new control triangle is created in between any two adjacent vertices at
the coarser level. This situation is illustrated in Figure 5, left, where the darker triangles
are known. We are looking for the a-and P-factors for the middle control polygon, which
is tangent to the surface at s(Vk), Vk (Vi + Vj). Consider the a-factor first. In order
to obtain a better fit, we try to interpolate p at Vik = (Vi + Vk) and Vkj = ½(Vk + Vj).
This yields a set of fitting equations

aili - akik = qik, (4.4)
aki/k - aj'Yj qk,

where ai and aj are known. Thus, ak can be obtained as the least-squares solution of
(4.4):

ak= -(k" (ai"i - qi,k + qk,j - ajlj)). (4.5)

The fk-factor is found by fitting the cross-boundary vectors at Vi,k and Vkj, i.e., by
solving the following system in the least-squares sense:

{iikk = 2(f36k-kf , (4.6)

where Pi and /lj are known. If Ji,k = 65k = 6",j, as is always the case for a planar curve,
this system has no solution in the least-squares sense. The Ak factor can then easily be
obtained by equation (3.6), i.e., by subdivision and upscaling.

4.3 The interior control points

Finally, as soon as the user supplied edge curves have been approximated well enough,
the interior control points at the eventual refinement level have to be calculated. We will
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FIG. 5. The refinement and post-iteration steps.

FIG. 6. The hole and the triangular patches.

discuss three possibilities by the help of an example; Figure 6 shows a hole (left) and
two filling patches (right).

Copy From Initial. The interior control points are obtained directly from the initial
solution by subdivision. This guarantees that the interior of the patch is smooth. A
disadvantage is that the inner of the first approximation in general has no connec-
tion with the shape of the edge curves. This can cause unwanted artefacts near the
boundary, after a few iterations (see Figure 7, left). The next option will therefore
take edge features into account.

Averaging. We will fill the hole gradually by calculating a ring of control triangles
during each pass, going from the edge towards the inner of the patch. Figure 5, right
shows an example where each ring has a different shade of grey. At each step, a
control triangle of the current ring is obtained by averaging six surrounding control
triangles. These come from the initial solution, or, if possible, from a previously
calculated ring. Edge features are now smoothed out towards the inner of the patch.
However, there is a main disadvantage to this approach, if averaging is applied after
the last iteration step: the unwanted artefacts mentioned before are now repeated
for every ring, smoothed out towards the inner of the surface, as shown on Figure
7, middle.

Instant Update. A good compromise would be to take edge features into account
before we finish iterating. This can be accomplished by subdividing the initial solu-
tion at each refinement step, but, we always overwrite its edge with the most recent
boundary approximation. The results of this strategy are depicted in Figure 7, right.

In any case can the user change the interior control triangles, and still he has a Cl-
continuous filling patch, fitting the specified edge curves with demanded precision.
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FIG. 7. Copy from initial solution and averaging (4 iterations); instant update (3 iter-
ations).

FIG. 8. Cases with 4, 5 and 6 boundary curves.

4.4 A note on the number of edges

The algorithm sketched in Section 4 is immediately applicable to problems with 4, 5
and 6 boundary curves as well. Figure 8 shows the configuration of the initial solution
for each of these cases. If we are working with 5 edges, there are 2 edges having a
control triangle at its midpoint (shaded darker). This requires a tiny modification to the
calculation of the initial solution for those edges. The a-factors are obtained by solving
(4.4) to the unknown ai, aj and ak. The /3-factors of the outer control poygons are
obtained as usual; for the middle polygon one can apply (3.6). Also, for the cases of 5
and 6 boundary curves, an interior control triangle (unshaded) has to be calculated for
the initial solution. This can be done by averaging the six surrounding control polygons.
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