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Abstract

We discuss here recent developments on the convergence of the g-Bernstein polynomials
B f which replaces the classical Bernstein polynomial with a one parameter family of
polynomials. In addition, the convergence of iterates and iterated Boolean sum of g-
Bernstein polynomial will be considered. Moreover a q—dif’ference operator D, f defined
by Dgf = fz, qz] is applled to g-Bernstein polynomials. This gives us some results which
complement those concerning derivatives of Berristein polynomlals It is shown that, with
the parameter 0 < ¢ < 1, if A*f, > 0 then DkB f 2 0. If fis monotonic so is Dy B, f.

If f is convex then ’D B.f>0.

1 Introduction

First we begin by introducing some notations to be used. For any fixed real number
g > 0, the g-integer [k] is defined as
k] = { (1-4¢%)/(1-q), ¢#1,
k ) q= 1,
for all positive integer k. The term Gaussian coefficient is also used, since they were first
studied by Gauss (see Andrews [1]).

Let p(IN, M, n) denote the number of partitions of a positive integer n into at most M
parts, each less than or equal to N. Then the Gaussian polynomial, G(N, M, n), appears
as the generating function

| N+M
mMMM=[+ }

o = e Mg

n>0

["J =T ![Zik]!’ nzk20,

k 0, otherwise,

~ where [n]! = [n][n — 1] - -- [1] with [0]! = 1, is called Gaussian polynomial (or g-binomial
coefficient) since it is a polynomial in g with the degree (n — k)k. The g-binomial coeffi-

" Note that [}] defined by
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cients satisfy the recurrence relations,

S Rl +m | S
[nzl]z[kﬁl]”km‘ o

The following Euler identity can be verified using the recurrence relation (1.1) by
induction that ,

and

(1+z)(1+ qx) (4 ¢ e) = ‘ qu(r—l)/z[ ] (1.3)

Phillips [§] 1ntr0duced a generalization of Bernstein polynomials (q-Bernsteln poly-
nomials) in terms of g-integers

n—r—1

=§:;,fmm IT a-¢a), " " (1-4):

8=0

where f. = f (%) and an empty product denotes 1. When g =1 the (1.4) reduces the

classical Bernstein polynomials. The B,(f;z) generalizes many properties of classical
Bernstein polynomials. Firstly, generalized Bernstein polynomials satisfy the end point
interpolation

Ba(£:0) = £0), Ba(f;1) = £(1).

~ Phillips [8] also states the generalization of well known forward difference form (see Davis
[3]) of the classical Bernstein polynomials by the following theorem.

Theorem 1.1 The generalized Bernstein polynomial, defined by (1.4), may be expressed '

in the g-difference form
n

=Y Mok as)

r=0
where AT fi = AT f; 1 — ¢ TTATTf for v > 1 and A%f; = fi.
It is easily verified by induction that g-differences satisfy

TP

Using the g-difference form of the g-Bernstein polynomials (1.5), one may show that
q-Bernstein polynomials reproduce linear functions, since B,(1;z) = 1; Bu(z;z) = =

2 Convergence

In the discussion of the uniform convergence of the q—Bernstem operator, the Bohman-
Korovkin Theorem (see Cheney [2]) is used as in the classical case. The Bohman-
Korovkin Theorem states that for a linear monotone operator L,, the convergence of
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Ly f — f for f(z) = 1,z,2?% is sufficient for the sequence of operators £, to have the

uniform convergence property L,f — f, Vf € C[0,1]. Observe that the g-Bernstein op-
erator is a monotone linear operator for 0 < ¢ < 1. For a fixed value of g with 0 < g < 1

[n]-—»llq as n— oo.

Notice that, since B,(2?;z) = 22 + ﬂ%;:]—?l, B, (x?; ) does not converge to 2. Phillips

[8] studies the uniform convergence of g-Bernstein polynomial.

Theorem 2.1 Let g = g, satisfy 0 < ¢, <1 and let ¢, — 1 as n — oo. Then,
B,(f;z) — f(z), Vf(z)€Clo,1].

The degree of g-Bernstein approximation to a bounded function on [0,1] may be de-

scribed in terms of the modulus of continuity with the following theorem.

Theorem 2.2 If f is bounded on [0,1] and B,f denotes the generalized Bernstein
operator associated with f defined by (1.4), then

IF = Buflloe < 01/},

" An error estimate for the convergence of g-Bernstein polynomials is given in Phillips 8]

by the Voronvskaya type theorem.

Theorem 2.3 Let f be bounded on [0,1] and let xo be a point of [0,1] at which f"(zo)
exists. Further, let q = g, satisfy 0 < g, < 1 and let ¢, — 1 as n — oco. Then the rate
of convergence of the sequence of generalized Bernstein polynomials is governed by

Tim [n](Ba(f:70) ~ £(z0)) = 570(1 — 20) " (@)

It is well known that the classical Bernstein polynomials B, f provide simultaneous

approximation of the function and its derivatives. That is if f € CP[0, 1], then

Jim BYP(f;z) = f)(a)

uniformly on [0, 1]. It is worthwhile to examine if this property hold for g-Bernstein poly-
nomials. Phillips [7] proved that the p** derivative of g-Bernstein polynomials converges -

" uniformly on [0,1] to the p** derivative of f under some restrictions of the parameter q.

This property results from the generalization of the following theorem.

Theorem 2.4 Let f € C[0,1] and let the sequence (g,) be chosen so that the sequence
(en) converges to zero from above faster than (1/3"), where

n B
€, =
tltgn @+t

Then the sequence of derivatives of the generalized Bernstein polynomials, B f, con-

-1

i verges uniformly on [0,1] to f'(x).

Up to now the convergence of ¢g-Bernstein polynomials is examined by taking a se-

‘quence ¢ = g, such that g, — 1 as n — oo. In the recent developments, the convergence
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of ¢g-Bernstein polynomials is examined for fixed real ¢, 0 < ¢ < 1 and for ¢ > 1. It is
proved in Orug and Tuncer [6] that for a fixed ¢, 0 < ¢ < 1, the uniform convergence
holds if and only if f is linear on the interval [0, 1]. Moreover, if ¢ > 1, B,f — f as
n—oooif fisa polynomlal ‘

Theorem 2.5 Let g > 1 be a fized real number. Then, for any polynomzal D;
' k lim By (p;z) = p(z).

For any fixed integer ¢, the g-Bernstein polynomials of monomials (See Goodman
et.al. [4]) can be written explicitly as

Bp(a;m) = Y A; [ 78S, (3, 5)a7, (2.1)
j=0 .

where L
.-

an empty product denotes 1, and

Sq(6,9) = WZ 1)ygt™ 1)/2[ ][rr]’ 0'siéj, ’(2.2)

is the Stlrhng polynomial of second kind. Thus for any polynomlal p of degree m, one -

may write ¥
By(p;z) = aT Ax, : S ‘,(2.3)

where a is the vector whose elements are the coefficients of p, A is an (m+1) x (m +1)
lower triangular matrix with the elements

‘ A8, G, 5), 0<j<d,
aw={0ﬂ] q(ﬁ,i<i : 2.4)
and x is the vector whose elements form the standard basis for the space of polynomlals
Py, of degree m.

Lemma 2.1 Let0<q¢<1 bea fized feal number. Then
Jim B, (p;z) = p(z)
if and only if p(x) is linear.
This lemma can be generalized for any function f € C[0,1].
Theorem 2.6 Let 0 < g <1 be a fized real number and f € C’[O, 1]. Then
| lim By (f;@) = f(x) |

if and only if f(z) is linear.
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3 The iterates

_The iterates of classical Bernstein polynomials were first studied by Kelisky and Rivlin

[5]. The authors proved that iterates of Bernstein polynomials converge to linear end

_point interpolants on [0, 1]. Several generalization of the result due to Kelisky and Rivlin

has been considered by many authors; see Sevy [9] and Wenz [10]. The recent result is
the convergence of iterates of generalized Bernstein polynomials. It is proved in Orug and
Tuncer [6] that the g-Bernstein polynomials do preserve the convergence property of iter-

- ates of classical Bernstein polynomial. The iterates of generalized Bernstein polynomial

are defined by ‘
B,Il\'!'*l(f;x):Bn(B,{"(f;a:);x), M=1,2,..., (3.1)

where B1(f;) = Bu(f; ).

Theb‘rem 3.1 Let ¢ > 0 be a fired real number. Then

Jim BY(f;2) = £(0) + (£(1) - £(0))z. (3:2)

Let A and B be operators then the Boolean sum of 4 and B is defined to be
A®B=A+ B~ Ao B.

We will be concerned with iterated Boolean sums of the generalized Bernstein polyno-
mials in the form B, ® B, @ --- @ B, and will denote such an M-fold Boolean sum of
the generalized Bernstein operators by @ B,,. Sevy [9] and Wenz [10] proved that the
limit of iterated Boolean sums of Bernstein polynomials is the interpolation polynomial
with respect to the nodes (%, f(%)) i=0,...,n as M — oo. The second theorem of this
section will give a result for the convergence of iterates of Boolean sums of generalized
Bernstein polynomials. It is proved in Orug and Tuncer [6] that the iterates of Boolean
sums of ¢g-Bernstein polynomials converge to the interpolating polynomial at the nodes

(Fr ().

" Theorem 3.2 The iterated Boolean sum of the g-Bernstein operator @™ B, (f; ) as-

sociated with the function f(z) € C[0,1] converges to the interpolating polynomial L, f
of degree n of f(z) at the points z; = [i]/[n], i=0,1,...,n.

4 A difference operator D, on generalized Bernstein polynomials

Given any function f(z) and g € R we define the operator D,

Thus D, f(x) is simply a divided difference, Dy f(x) = flz, gz]. Note that, for a function

~ f and non-negative integer k

fla,qz, .. q"2] = [—,:]—!Dsf(m).
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Theorem 4.1 For any integer 0 < k <n,
' n—k n—k n—r-1 .
DZBn(f;m)=[n]---[n—k+1]ZAkf,«[ - ]xr H (1-q°z).
, ‘ r=0 AT . s=k

- Proof: Recall the g-difference form of generalized Bernstein polynomials (1.5) and
apply the operator Dy to B,.(f; ) repeatedly k times to get,

DEB,(f; ) z = k_r]' r]'mﬁrr foa". @)

It will be useful to express A" in terms of A¥. One may prove by 1nduct10n on m that,
for 0 < m < n — k we may write

Am+kfi — Z(_ t t(t+2t 1)/2[ ]Akfm-m .

Now applying the latter identity to (4.2) gives

e n—k r : r -
prn(f;¢)=ZZ('_l)’tqt(tJrzk_l)/z____[_’Z]_!_;_ T]Akfr_twr. (43

e [n—k—r![r]! |t

Writingm=r —t¢

)  [met B [n]! e k—m]
e N = ,t | o
and putting (4.4) in (4.3) we obtain '
DFB, (f: )_%—j I A ""fm(_.ltt(wzk—l)/z["‘k_m )
i) = 3 g A 3 0 L)

Now, it can be easily derived from generalized binomial expansion (1.3), on replacing =
by ¢*z, that

n-;m—l I k
H (1 - qfx) = Z (_1)tqt(t+2k_1)/2 [n — k- m] o
t=0

t=k
- This completes the proof. SO
From Theorem 4.1 we see that, with 0 < ¢ < 1, if A¥f, > 0 for 0 <7 < n —k then

D¥B,(f;z) > 0. IfflsconvexonOSxS_1thenD2B (fiz)>0for0<qg<1.If fis
increasing then DyB,(f;z) >0, for 0 < g < 1.
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