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Abstract

We discuss here recent developments on the convergence of the q-Bernstein polynomials
B,,f which replaces the classical Bernstein polynomial with a one parameter family of
polynomials. In addition, the convergence of iterates and iterated Boolean sum of q-
Bernstein polynomial will be considered. Moreover a q-difference operator V~qf defined
by VEqf = f[x, qx] is applied to q-Bernstein polynomials. This gives us some results which
complement those concerning derivatives of Bernstein polynomials. It is shown that, with
the parameter 0 < q < 1, if Akfr > 0 then DqBnf 0. If f is monotonic so is DqBnf.
If f is convex then EqBf > 0.

1 Introduction

First we begin by introducing some notations to be used. For any fixed real number
q > 0, the q-integer [k] is defined as

[] (1 -qk)/(1 -q), q l ,k, q = 1,

for all positive integer k. The term Gaussian coefficient is also used, since they were first
studied by Gauss (see Andrews [1]).

Let p(N, M, n) denote the number of partitions of a positive integer n into at most M
parts, each less than or equal to N. Then the Gaussian polynomial, G(N, M, n), appears
as the generating function

G(N, M, n)= [ M 1  N,MA n)qn.
n>O

Note that [ ] defined by

[][ki , n>k>0,
0, otherwise,

where [n]! = [n][n - 1] ... [1] with [01! = 1, is called Gaussian polynomial (or q-binomial
coefficient) since it is a polynomial in q with the degree (n - k)k. The q-binomial coeffi-
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cients satisfy the recurrence relations,

[nk1] =qn-k+[nl] + K] (1.1)

and

[k I = [k 1] +qk[nfl. (1.2)

The following Euler identity can be verified using the recurrence relation (1.1) by
induction that

k

(1+ x)(1 +qx) ... (1 + q x) J rq~1/[~T (1.3)

Phillips [8] introduced a generalization of Bernstein polynomials (q-Bernstein poly-
nomials) in terms of q-integers

Bn(f;x)= Efr x H (1-q'x), (1.4)
r=0 s=0

where fr = f ([n) and an empty product denotes 1. When q = 1 the (1.4) reduces the

classical Bernstein polynomials. The Bn(f; x) generalizes many properties of classical
Bernstein polynomials. Firstly, generalized Bernstein polynomials satisfy the end point
interpolation

Bn(f; 0) = f(0), B.(f; 1) = f(1).

Phillips [8] also states the generalization of well known forward difference form (see Davis
[3]) of the classical Bernstein polynomials by the following theorem.

Theorem 1.1 The generalized Bernstein polynomial, defined by (1.4), may be expressed
in the q-difference form

B7 (f;X) = E [n] xv (1.5)
r=--0

where Arf, = Ar-lfi+ - q-lAr-l f for r >_ and Aofi fi-

It is easily verified by induction that q-differences satisfy

Arf, = 1(1)kqk(k-1) 2 [r] fr+i-k. (1.6)
k=Ok

Using the q-difference form of the q-Bernstein polynomials (1.5), one may show that
q-Bernstein polynomials reproduce linear functions, since B7 (l; x) = 1; Bn(x; x) = x.

2 Convergence
In the discussion of the uniform convergence of the q-Bernstein operator, the Bohman-
Korovkin Theorem (see Cheney [2]) is used as in the classical case. The Bohman-
Korovkin Theorem states that for a linear monotone operator 4n, the convergence of



54 Halil Orug and Necibe Tuncer

I2nf -* f for f(x) = 1, x, x 2 is sufficient for the sequence of operators £,, to have the

uniform convergence property Cnf -4 f, Vf c C[O, 1]. Observe that the q-Bernstein op-

erator is a monotone linear operator for 0 < q _< 1. For a fixed value of q with 0 < q < 1
1

[n]- as n -+ oo.
1-q

Notice that, since Bn(x 2 ; x) = x 2 + x Bn (x 2 ; x) does not converge to x 2. Phillips

[8] studies the uniform convergence of q-Bernstein polynomial.

Theorem 2.1 Let q = qn satisfy 0 < q, < 1 and let q, - 1 as n - oo. Then,

Bn(f;x) - f(x), Vf(x) E C[0,1].

The degree of q-Bernstein approximation to a bounded function on [0, 1] may be de-

scribed in terms of the modulus of continuity with the following theorem.

Theorem 2.2 If f is bounded on [0, 1] and Bnf denotes the generalized Bernstein
operator associated with f defined by (1.4), then

If - BfII. < w(1/[n

An error estimate for the convergence of q-Bernstein polynomials is given in Phillips [8]
by the Voronvskaya type theorem.

Theorem 2.3 Let f be bounded on [0, 1] and let x 0 be a point of [0, 1] at which f"(xo)

exists. Further, let q = qn satisfy 0 < qn < 1 and let qn -- 1 as n --+ oo. Then the rate
of convergence of the sequence of generalized Bernstein polynomials is governed by

lim [n](Bn (f; xo) - f(xo)) = 1x0(1 - xo)f"(xo).

It is well known that the classical Bernstein polynomials Bnf provide simultaneous

approximation of the function and its derivatives. That is if f E CP[0, 1], then

lim B(P)(f; x) = f(P)(x)
n- 0

uniformly on [0, 1]. It is worthwhile to examine if this property hold for q-Bernstein poly-
nomials. Phillips [7] proved that the pth derivative of q-Bernstein polynomials converges
uniformly on [0, 1] to the pth derivative of f under some restrictions of the parameter q.

This property results from the generalization of the following theorem.

Theorem 2.4 Let f E C' [0, 1] and let the sequence (q,,) be chosen so that the sequence

(en) converges to zero from above faster than (1/3n), where
n

E = l +qn + qn +'"+q- - - 1"

Then the sequence of derivatives of the generalized Bernstein polynomials, Bnf, con-

verges uniformly on [0, 1] to f'(x).

Up to now the convergence of q-Bernstein polynomials is examined by taking a se-
quence q = qn such that qn - 1 as n -- co. In the recent developments, the convergence
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of q-Bernstein polynomials is examined for fixed real q, 0 < q < 1 and for q 1. It is
proved in Oru and Tuncer [6] that for a fixed q, 0 < q < 1, the uniform convergence
holds if and only if f is linear on the interval [0, 1]. Moreover, if q > 1, Bf -- f as
n -- oc if f is a polynomial.

Theorem 2.5 Let q > 1 be a fixed real number. Then, for any polynomial p:

lim Bn(p; x) = p(x).

For any fixed integer i, the q-Bernstein polynomials of monomials (see Goodman
et. al. [4]) can be written explicitly as

Bn (x'; x) = EAj [n]j-'Sq (ij)xj, (2.1)

j=O

where

)Aj = 11 1-
r=o [n])

an empty product denotes 1, and

Sq(ij) ] 1- [- r], 0< i <j, (2.2)

is the Stirling polynomial of second kind. Thus for any polynomial p of degree m, one
may write

Bn(p; x) = aTAx, (2.3)

where a is the vector whose elements are the coefficients of p, A is an (m + 1) x (m + 1)
lower triangular matrix with the elements

{ Aj[n]j-iSq(i,j), O<j 5i, (2.4)a = 0, i <j,

and x is the vector whose elements form the standard basis for the space of polynomials
Pm of degree m.

Lemma 2.1 Let 0 < q < 1 be a fixed real number. Then

lira Bn (p; x) = p(x)
Sn-oo

if and only if p(x) is linear.

This lemma can be generalized for any function f E C[0, 1].

Theorem 2.6 Let 0 < q < 1 be a fixed real number and f E C[0, 1]. Then

lim Bn (f; x) f f(x)
n-io

if and only if f (x) is linear.
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3 The iterates

The iterates of classical Bernstein polynomials were first studied by Kelisky and Rivlin
[5]. The authors proved that iterates of Bernstein polynomials converge to linear end
point interpolants on [0, 1]. Several generalization of the result due to Kelisky and Rivlin
has been considered by many authors; see Sevy [9] and Wenz [10]. The recent result is
the convergence of iterates of generalized Bernstein polynomials. It is proved in Oru and
Tuncer [6] that the q-Bernstein polynomials do preserve the convergence property of iter-
ates of classical Bernstein polynomial. The iterates of generalized Bernstein polynomial
are defined by

BMjl(f;x)=B.(BM(f;x);x), M=1,2,..., (3.1)

where Bn'(f; x) = Bn(f; x).

Theorem 3.1 Let q > 0 be a fixed real number. Then

lim BM(f; x) = f(0) + (f(1) - f(0))x. (3.2)
M-00o

Let A and B be operators then the Boolean sum of A and B is defined to be

A E B = A + B - A o B.

We will be concerned with iterated Boolean sums of the generalized Bernstein polyno-
mials in the form Bn D B, D ... D B, and will denote such an M-fold Boolean sum of
the generalized Bernstein operators by eMB,. Sevy [9] and Wenz [10] proved that the
limit of iterated Boolean sums of Bernstein polynomials is the interpolation polynomial
with respect to the nodes (if()) i = 0,..., n as M --* oo. The second theorem of this
section will give a result for the convergence of iterates of Boolean sums of generalized
Bernstein polynomials. It is proved in Oru and Tuncer [6] that the iterates of Boolean
sums of q-Bernstein polynomials converge to the interpolating polynomial at the nodes

( Aif (Aj)).
Theorem 3.2 The iterated Boolean sum of the q-Bernstein operator eMB, (f; x) as-
sociated with the function f(x) E C[0, 1] converges to the interpolating polynomial Lnf
of degree n of f (x) at the points xi = [i]/[n], i = 0, 1,..., n.

4 A difference operator E)q on generalized Bernstein polynomials

Given any function f(x) and q E R we define the operator Dq

)qf(x) = f(qx) - f(x) (4.1)

qx - x

Thus Vqf(x) is simply a divided difference, Dqf(X) = f[x, qx]. Note that, for a function
f and non-negative integer k

f[x,qx,...,q x] 1 !fq[k]!
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Theorem 4.1 For any integer 0 < k < n,

n-k n-r-1

DqBn(f;x)=[n]..[n-k+1]z Akfr n-k x r 1 (1- qsx).
r---0 r k

Proof: Recall the q-difference form of generalized Bernstein polynomials (1.5) and
apply the operator Dq to Bn(f; x) repeatedly k times to get,

z-B [n]! Ak+rfox. (4.2)
q Bn(f; ) = r -n-- r]![r](

r=0

It will be useful to express Ak+r in terms of Ak. One may prove by induction on m that,
for 0 < m < n - k we may write

Am+kfi = E(-)tqt(t+2t-1)/2 tAk fmit.

t-=0]

Now applying the latter identity to (4.2) gives

n-k r

DkBn(f; X) = 1 (=l)tqt(t+2k - 1)/2 [n]! Fri /Akf (4.3)
r=O t=0 In - k - r]![r]! [t -

Writing m = r - t

[n]! [m+tl [n _[n-km (4.4)
In - k - m -t][m + t]! In - k- m]![m]! t

and putting (4.4) in (4.3) we obtain
n-k n-k-rnrm

D Bn(f;x) = S-k In]! Akrn - t(t+2k-)/2 n - k m t.

r In - k-m]![m]! x [ t J
M = 0 t -- I= O

Now, it can be easily derived from generalized binomial expansion (1.3), on replacing x
by qkx, that

n-m-i n-k-m

1711E-qx (-l)tqt(t+2kt1)/
t=k t=O

This completes the proof. El

From Theorem 4.1 we see that, with 0 < q _< 1, if Akfr _ 0 for 0 < r < n - k then
Dk Bn(f;x) >0 . Iff is convex on 0 < x < 1 then D2 Bn(f;x) 0 for 0 < q 1. Iff is
increasing then DqBn(f; x) > 0, for 0 < q < 1.
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