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Abstract

In this paper we present a class of C2 spatial interpolating curves depending on a set
of tension parameters and we illustrate their ability to reproduce the shape of the data.
The curves are constructed using cubic splines and basically reduce to classical v-splines
for particular values of the tension parameters.

1 Introduction

Shape-preserving interpolation via functional as well as parametric splines is a well
studied topic for the planar case. On the other hand, shape-preserving interpolation for
spaces curves is considerably more complex than for planar ones and the related literature
is apparently limited. On this concern, a considerable part of the available schemes only
ensures geometric continuity of the obtained curve (see [1, 8] and references quoted
therein). Recently, C2 and C' shape-preserving interpolating space curves have been
obtained using polynomial splines of variable degree, [2, 3, 6]. However, working with
low(fixed)-degree polynomial splines seems to be a standard choice in the CAD/CAM
community. This motivates the careful investigation of shape preserving properties of
cubic v-splines recently carried out in [7] and the present paper.

In this paper we present a method for constructing C2 spatial interpolating curves
reproducing the shape of the polygonal line which interpolates the given data. The curve
is constructed via the so called "parametric approach", [10], using classical cubic splines.
The shape of the curve is controlled by the amplitude of the tangent vectors at the data
sites which play the role of tension parameters. It turns out that, for particular values
of the tension parameters, the proposed scheme provides a new, geometrically evident,
description of classical C1 - G2 cubic v-splines, [11]. Moreover, the method produces a
suitable reparameterization for the above mentioned curves ensuring C2 continuity. The
reparameterization is a cubic polynomial involving the tension parameters (see (3.3)).
Thus, the evaluation of the curve for a fixed value of the new parameter requires the
solution of a cubic equation.

The geometric meaning of the tension parameters coupled with the powerful "shape-
preserving" properties of the Bernstein-B6zier representation can be efficiently used to
construct an iterative algorithm for C2 shape-preserving interpolation. The algorithm
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Shape-preserving spatial interpolation 45

converges in a finite number of iterations and requires at each iteration the solution of
a diagonally dominant linear system.

The paper is organized as follows. In Section 2 we state the problem. In Section 3 we
describe the construction of the required interpolant and we illustrate its dependence on
the tension parameters. The asymptotic behavior and the shape-preserving properties
of the obtained curve are briefly discussed in Section 4. We conclude in Section 5 with
a graphical example.

2 The problem
In this section we introduce the problem of shape-preserving interpolation by curves in
R3 . The adopted notion of shape-preserving follows the definitions of [2] and [6]. Let

1, E ]R3, i = 0,...,N,

be the interpolation points with Ii 5 Ii+ . Define, for all admissible indices,
Li := i+j - Ii,L Li-1xLi

Ni : jLjlXLi , if ILi-1 x Lill > 0,
0, elsewhere,

AILI L Li 1 , I I x Lil IILi x Li+iI1 > 0,

/ I0, I elsewhere,

where a b cl denotes the determinant of the matrix with columns a, b, c. The vectors
Ni and the scalars Ai are, respectively, the discrete binormals and the discrete torsions
of the data.

Let the parameter values ai, i = 0, . . . , N, with ai < ai+1 be given, and let

hi := oi+j - oi, i =0,1,..N- 1

be the corresponding spacings. We wish to construct a curve Q (s), s G [ao, aN], which
interpolates the data, Q(ai) = I, i = 0,... ,N, such that Q E C2 [o-0,o-N]. In addi-
tion, we also require that Q(s) is shape-preserving, that is it reproduces the convexity
and torsion of the polygonal line connecting the interpolation points. More specifically,
denoting with dashes derivatives with respect to the parameter s, we define

K(s) :Q'(s) x Qs) if IQ'(s) Q"(s) Q'(s)I if g(s)

KIs)I:= Q'(s)I3 xQ"(s if Q'(s) = 0, T(s) IIQ,(s) x Q,(s)I I fllQ ,( sll X,1(~ jII Q '( s ll ' 1 ( 2 .1 )

as the curvature vector and the torsion of the curve respectively. Q(s) is shape-preserving
if it satisfies the following criteria ([2, 6, 7]).

(i) Convexity criteria:
(i.1) if N. Ni+j > 0, then K(s). Nj > 0,j = i,i + 1, s E [ori,oi+l],
(i.2) if Ni. Ni+1 < 0, then K(s). Nj, j = i, i + 1, has one change in sign in [ai, 9i+l],
(i.3) if Ni-Nj $ 0 then (K(ori). Nj)(Ni. Nj) > 0, j = i - 1, i, i + 1.

(ii) Torsion criteria: if Ai 0 then r(s)Ai > 0, s c [+, a-+,].
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For the sake of brevity we refer to [7] for the more technical collinearity and coplanar-
ity criteria.

3 Constructing the interpolating curve
In order to construct the curve Q we consider, as a first step, a cubic curve C interpol-
ating the data. We put

C-)['.+ 1 = C (t .A M°) \(I )), (3 .1)

Cj(t; A'0 ), )) := ) IiH•°)(u) + Ii+1 H(°)(u) + )°)hjTjH(o1)(u) + V)hjTj+lHf()(u),

t E [ai,ai+j], u := (t - o)/hj, (3.2)

where 0 < • Aý1) < 1 are shape parameters, Ti, Tj+I are vectors to be determined

and H}j)(u) denote the elements of the cardinal basis for cubic Hermite interpolation,

that is H.") (u) are the polynomials of third degree such that

d' HP'(r) (

dul =j1ri, r, l =0, 1.

One can immediately verify that the curve (3.2) interpolates the points I1, Ij+ at the
extremes of the interval [ali, a+] and has tangent vectors A) 1)Tj, Aý1)Tj+, at the same

extremes. The parameters A)0), A•1) determine the amplitude of the tangent vectors of
the curve at the two end points of the interval and they control the shape of the curve. To
be more specific, since H0(o)(u)+H(°)(u) = 1, we have that Ci(t; 0, 0) reduces to the line

through Ii, I+j. Thus, the parameters APo), A1 ) act as tension parameters stretching
the curve from the classical Hermite cubic interpolating Ii, Ij+j with tangents Ti, Tj+i

(P 0 ), •)1 = 1) to the line segment (AP°), AP) = 0). The curve (3.1) turns out to be of
class G'.

Let us consider now the new global parameter

8(t)i[[io+i s---8(t; A 0), A1)) oi .HFl°)(u) + oj+lH 0)°(u) + (3.3)
A(0) h. HJ(1)) + ýl)his(l)(u,).

It is not difficult to see that, if

0 < _< 1 (3.4)

then
dsi (; Ai > 0, t E [oji,oi+l].

dt

Thus (3.3) implicitly defines a function t = t(s), which provides a reparameterization for
(3.1). In the following we assume that conditions (3.4) hold and we define

Q(s) := C(t(s)). (3.5)

Since Q'(ui) = Ti, i = 0,...,N, Q is of class C'. For each sequence of the tension
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parameters )AM, P)1) we will determine the tangent vectors Ti, Ti+j so that Q is also
of class C2. Let us denote by dots derivatives with respect to the local parameter u.
Imposing continuity of Q"(s) at hi, i = 1,...,N - 1, from (3.3), (3.5) and from the
chain rule for derivatives, we obtain

.i' 1(1-)h._ 1 • 1V1 - gi_1 (1-)hil._)lTi Ci(O+)hj') 0O - 9i(O+)hi)•°)Wi
S(3.6)U z.A(') )3 (hjAý°))3(36

ti-l i-12

Thus, after some manipulations, from (3.2) we have
ujTj-l+ Tj+ vjTj+j= zi, i l..N -1, (3.7)

hi (o) (h. A(0)2
U. -- i-1l zi i .

Wi

wi

i h-1(3 - A$),)(hiAo ))2 + hi(3 - 41 ))(hilA? 1)2, (3.8)

Zi 3 = • (hjA•1) )2 +3 Lj• (o) 2
Wi Z1 Wi t

In order to uniquely determine the vectors Ti we need two additional equations that
will be obtained by imposing boundary conditions. Classical boundary conditions are
periodic conditions:

uoTN-1 + To + voT 1 = zo, UNTN-1 + TN + VNT1 = ZN

(with uo, Vo, UN, VN, Zo, ZN defined according to (3.8) setting h- 1 = hN-1, A(o_ - A(O)
P_ = A-( , L- 1 = LN-1, hN = ho, A(O) = A(o) A() = A'), LN = Lo) and end
tangent conditions:

To = Do, TN =DN,

(where Do, DN are given in input). In the following we will denote by I the set of indices
{1,..., N - 1} ({O,..., N}) when end tangent (periodic) conditions are considered. It is
not difficult to see that (3.7) for any choice of the above mentioned boundary conditions
provide a diagonally dominant system

AT = z. (3.9)

Thus we can state the following

Theorem 3.1 For any sequence AMo), , i = 0,..., N- 1, satisfying (3.4), there exists
a unique Q G C 2 [ao, aN] defined via (3.1)-(3.3), (3.5) which interpolates the given data
and satisfies periodic or end tangent conditions.

We notice that for A(°) = ) = 1, system (3.9) reduces to the system for the

computation of classical C2 cubic splines. Moreover, if = = Ak, k 1 ", the
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curve C is of class C 1 and equation (3.6) reads
d 2 d2 h 7 -2 g , (0 + ) - h -2 1 8 - ( - a )

•Ci(u+) - d-ICi-i(7 h•-)=i d at

Then (3.6) is equivalent to impose that the cubic curve (3.1) is a C'-G2 cubic v - spline
[5, 7, 11] where, from (3.3), for i E I

h72gi(O+) - h_21•i 1 (1) (6 - 4Aj - 2Ai2 l)h7' + (6 - 2A- 1 - 4Ai)h- 1Ai :-- Ai Ai

(3.10)

4 Asymptotic behavior and shape-preservation

In this section we briefly discuss the asymptotic behavior and the resulting shape-
preserving properties of the curve Q, defined by (3.1)-(3.3), (3.5) and (3.9), as the

tension parameters A!O), Aý1) approach zero. The following lemma (see also [7]) concerns
the asymptotic behavior of the tangents Ti. We omit the details of the proof which are
completely analogous to those of Theorem 3 in [9].

Lemma 4.1 The vectors Ti, i = 0, ... , N, obtained from, (3.9) are bounded independ-

ently of ,0) A(') j 0, ... , N -1. Moreover,

hi(0) ))2 h- 1 (Aý1) 1 )2
lim Ti hi- 1./\1 ) 2i-1. + ÷ji _L

0°)',0)- hi(AM°)2 +I hi-l(P )2~l hi- ! -- (P)j})2 + hi (P•))2 hi

Li 1  L.
-(& )h + ai, jE1. (4.1)

Since the tangents are bounded independently on the tension parameters, from the
previous section we have that Q approaches the piecewise linear function interpolating
the data as the tension parameters tend to zero. Moreover, each tangent Tj determined
by (3.9) tends to a strictly convex combination of Lj- 1 /hj-j and Li/hi as the tension

parameters Ai-, Ai1) tend to zero while A'-1 1/Aý(0) remains bounded and strictly positive.
Due to these two main facts, we are able to easy control the shape of the curve Q and
to ensure that it reproduces the shape of the data as the tension parameters approach
zero as we will discuss briefly in the following.

Since C and Q only differ for a reparameterization they have the same image. Thus, as
far as the shape-preserving properties are concerned, we can consider the expression of C.

As noticed in Section 3, if AW1)1 = Aý°), i E 1, the curve C with Tj obtained by (3.9), is a
C 1-G2 cubic v-spline. In such a case, using (3.10), the careful shape analysis carried out in
[7] and the resulting algorithm can be considered. However, the simple geometric meaning

of the tension parameters AýO), A'1) coupled with the "shape-preserving" properties of the
B6zier-Bernstein representation, allow us to more easily establish the shape-preserving

results also for completely general configurations of A(1) Aý0 ) Thus, we express the
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curve segment Ci (t; A 0), AP1) in B~zier-Bernstein form:
Ci~t , ý) i ý) = c 1(

1=0

Ci,O :- Ii, Cj, 1 := Ii + !hiAj°)Tj, Ci,2 := Ii+1 - -h3 Ai'Ti+l, Ci,3 :I

Let us consider at the beginning the convexity criteria.

Lemma 4.2 If Ni . Nj : 0 and c > 0, then

lim (K(ai). Nj)(Ni. Nj) > 0.

Proof: From the properties of B1zier curves (see [5]) and from (2.1) and (3.5)

sgn(K(oi). Nj) -- sgn((Ci,1 - Ci,o) x (Ci,2 - Ci,1))" Nj

sgn Tj x Li - ýý j-i 3ýT+) j

where sgn(y) denotes the sign of y. Moreover, from (4.1)

a•2lim, -° (T j x L i) .- N j = i L-i x Li + (1 - a i) i-• -_ x Li .N j h a-1 N i -N j.

Hence, we obtain the assertion if Ni -Nj : 0. 13

The previous lemma ensures that if A0 I' are small enough the third convexity
criterion, (i.3), stated in Section 2 is satisfied. In addition, the sign of K(ak).Nj, k = i, i+
1 can be checked considering the BWzier coefficients Ci,j, l = 0, 1, 2, 3, of Ci. Furthermore,
thanks to the shape-preserving properties of totally positive bases, for small values of the
tension parameters, (see [4]) the number of changes in sign of K(s) • Nj, s E [01i, ai+l]
is bounded by the number of changes of sign in the pair K(ok) • Nj, k = i, i + 1. Thus,
also the first and the second convexity criteria (i.1) and (i.2) are satisfied if the tension
parameters are small enough.

As far as the torsion is concerned, we recall that the sign of the torsion of a cubic
curve coincides with the sign of the discrete torsion of its B1zier control polygon (see for
example [5]) thus it is not difficult to obtain the following

Lemma 4.3 If Ai : 0 and ) c >0,jii +1, then

lim r(s)Ai > 0, s E [o+,oj.
.•(o) ,A() .•(o) A( 0) ) ( 1) -

i- 1' i '-• i i' j+1 i+1

With similar arguments it is not difficult to prove that also the collinearity and the
coplanarity criteria stated in [7] are fulfilled as the tension parameters approach zero.
We omit the details for the sake of brevity.

Summarizing, from the previous discussion it follows that if the tension parameters are
small enough then the B3zier control polygon of C reproduces the shape of the data and
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the curve C does the same thanks to the properties of B~zier-Bernstein representation.
Thus, to obtain an automatic algorithm to compute the C 2 interpolant Q defined by
(3.5), satisfying convexity and torsion criteria, basically we have to perform the following
steps:

(a) for a given sequence of the tension parameters solve the system (3.9) and compute
the B1zier coefficients of the resulting curve C;

(b) check if the control polygon of each segment Ci satisfies the convexity and torsion
criteria;

(c) if this is not the case reduce the values of the related tension parameters according
to a given rule and go to step (a).

5 A graphical example

To illustrate the performance of the presented scheme we consider the data proposed
in [7], Example 2, consisting of 20 points with uniform parameterization in [0, 1]. End
tangent boundary conditions have been used (see Table 2 in [7]). Figures 1-3 show the
behavior of the obtained C 2 curve Q compared with the classical C 2 cubic spline. The
shape-preserving curve Q is defined by the following sequence of tension parameters

.6 .6 1 .9 .9 1 1 1 1 1 1 1 1 1 .75 1 1 1 1
Aý1) .9 .6 .6 1 .9 .9 1 1 1 1 1 1 1 1 1 1 1 .75 1.

0 480 40

FIG. 1. C 2 cubic spline (left) and Q (right).
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FIG. 3. Left: torsion of the C2 cubic spline (dotted line) and of Q (the horizontal lines
depict the sign of the discrete torsion). Right: first component of d2C/dt2 (dotted line)
and of d2 Q/ds2 .
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