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CAGD techniques for differentiable manifolds

Achan Lin and Marshall Walker

York University, Toronto M3J 1P3, Canada.
1in~yorku. ca, wa1ker~yorku. ca

Abstract
The paper outlines procedures for extending the de Casteljau, de Boor and Aitken al-
gorithms in such a way as to allow the construction on a Riemannian manifold of curves
analogous to Bezier, B-spline, and Lagrange curves. These curves lie in the manifold and
respect intrinsic geometry.

1 Introduction
Given a sequence of points in a Riemannian manifold Al we describe methods for extend-
ing the de Casteljau, de Boor, and Aitken algorithms. These methods allow construction
of corresponding interpolating or approximating curves that lie in the manifold and re-
spect intrinsic geometry. In the case that the manifold is a sphere, opportunity for
applications exist in the domain of geological and geographical mapping, for instance
the creation of topographical contour lines or isotherms, and in the field of video pro-
duction, where it is desirable to have smooth camera trajectories interpolating fixed
camera positions. For higher dimensional manifolds there are applications in the field
of data analysis. For the case of a sphere, there is an extensive literature dealing with
the general problem of data fitting, and a superb review can be found in Fasshauer and
Schumaker [2]. Shoemake [7] uses properties of quaternion arithmetic to describe curves
on the unit quaternion sphere, and Levesley and Ragozin [4], using techniques differ-
ent from those presented in this paper, describe methods for Lagrange interpolation in
differentiable manifolds.

The techniques described in this paper come from the simple observation that in the
de Casteljau, de Boor, and Aitken algorithms one may formally substitute appropriately
parametrized geodesic arcs for straight line segments. These ideas are introduced in detail
in the next section in the context of the blossoming paradigm, [6] and [3]. Unfortunately
many of the useful properties of blossoms depend on the affine structure of Euclidean
space which in general has no counter part in a Riemannian manifold. In particular,
geodesic blossoms may be neither symmetric or multi-affine, and in general they do not
possess uniqueness characteristics common to the Euclidean blossom.

For an arbitrary Riemannian manifold [1] or indeed an arbitrary differentiable 2-
manifold embedded in WR, it may not be possible to construct unique shortest geodesic
arcs between two points. However, if the manifold is compact or in the case that the two
points lie in a sufficiently small neighborhood, such arcs are known to exist. But even
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then, there appears to be no general method that allows explicit construction. So, the
task of constructing geodesic blossoms becomes a study of special cases in which specific
methods can be set forth. For the general case, a discrete variational method can be
used to obtain good approximations.

In Section 3 a few specific examples are discussed. The case in which the manifold
is a sphere is given special attention. There we introduce a variation which allows the
discussion of Archimedian curves which are constructed by substituting Archimedian
spirals for geodesics. This variation allows the natural construction of curves that lie off
the sphere. Although the spherical geodesic blossoms are neither symmetric or multi-
affine, a simple reparametrization of geodesic arcs results in spherical blossoms that have
all desirable characteristics. Section 3 also contains a brief discussion of the problem of
finding geodesics in developable surfaces and in surfaces of revolution.

2 Preliminaries
Let M be a C' Riemannian manifold. There is the following theorem that guarantees
the existence locally of geodesics.

Theorem 2.1 If M is a Riemannian manifold, Xo E M. Then there exists a neigh-
borhood V of Xo and E > 0 so that if x E V and v is a non-zero tangent vector at x
and IlvxI < -, then there is a unique C' geodesic a (-2, 2) -- M defined on the open

interval (-2,2) such that a(O) = x and (- )_=

For compact Riemannian manifolds there is the Hopf-Rinow theorem that tells us
that points can be connected by geodesic arcs.

Theorem 2.2 (Hopf and Rinow) If a connected Riemannian manifold M is compact,
then any pair of points x and y may be joined by a geodesic whose length corresponds to
the distance in the manifold from x to y.

We also need the notion of geodesic convexity and the result of J. H. C. Whitehead
that geodesically convex neighborhoods exist for all x E M.

Definition 2.3 Given a subset X of M and a point Xo E X, X is star shaped with
respect to the point to, if for every x E X there is a unique shortest geodesic connecting
Xo with x which lies in X.

Definition 2.4 A subset X of M is geodesically convex if it is star shaped with respect
to each of its points.

Definition 2.5 Given a subset A of a geodesically convex set X the geodesic convex
hull of A is the smallest convex set which contains A.

Theorem 2.6 (J. H. C. Whitehead) Let V be an open subset of a Riemannian manifold
M and let x E M , then there is a geodesically convex open neighborhood U of x such
that U C V.

Let M be a Riemannian manifold and let X be a geodesically convex subset of M.
Given points Pi in M we describe extensions of the de Castlejau, de Boor, and Aitken
algorithms.
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2.1 Riemannian Lagrange curves

Let M be a Riemannian manifold, and let A = {Po, P1 , •, Pn } be a subset of a
geodesically convex subset X. Given parameter points, to < tj < ... < tn, assume that
A is contained in a sufficiently small neighborhood in which specified geodesics exist.
For 0 < i < n - 1, define -Y : [to, tn] -+ X to be the unique geodesic parametrized
so that yi(ti) = Pi and -,(ti+!) = Pi+,. For 1 < r < n and 0 < i < n - r define
7•" : [to, tn]' -4 X so that Y/(Ulu2," U , ' Ur-1 *) is the unique geodesic parametrized so
that Yi/(ul,U 2 ,. .,Ur-l, ti) = 'Yi-(Ul,U 2 ,-. .,u,.-,) and 74(Ul,U 2 ,..., *Ur, ti+r) =

A 1 (Ul, U2," u,-U1). The function -y'o : [to, t,]J --* X is called the geodesic Aitken
blossom associated with the points Pi E X, 0 < i < n and the parameter points, to <
tl < ... < t, - If A : [to, tn] -- [to, t,]f is the diagonal map defined by A(u) =
(u, u,* ., u), the geodesic Lagrange curve associated with X and the points Pi is the

n

function o = 70,o A.

Theorem 2.7 If Fr : [to, tn] --+ M is the geodesic Lagrange curve associated with the
points Pi E M, 0 < i < n, as defined above, then Fn(t,) = P,.

Proof: Observe that for 1 < r < n and 0 < i < n - r, 7i' depends for its definition
only on the points, Pj, where i < j _K i + r. If n = 1, and we are given points, Po and
P 1, the result follows from the definition of -y.1 . Inductively assume it is true for k < n.
For k = n, if i = 0, by definition

rn (to) = n (to, to,., to) = -yl- (to, to,., to) .... (to) =Po

7n n-1

and likewise if i =n, rU"' (t.) = 7o (tn, t," ,tn) = y- 1'(t,, tn, ,tn) .... •(t") -

Pn. For i 0 0 and i 0 n, observe that the geodesics used in the construction of
y-'- and '-l may be restricted respectively to the intervals [to,tn1-] and [t1 ,t7 ] so
that 7•-'becomes the geodesic Aitken blossom associated with the points Po, P1,'
Pn-land the parameter points to < tj < ... < t,-,, and , becomes geodesic Aitken
blossom associated with the points P 1, P2 ,." , P, and the parameter points tj < t 2 <

< tn. By the deductive assumption, -to"- 1 (ti, ti, t) = P Y = -1'(ti -t ' ),

n-1 i--1

and consequently -yon(ti, ti, t�,.) is the geodesic connecting 7 -1(titi,...,ti) with

n-1 n-I

-j(tiIti,". ,ti), and is thus the constant function, y (ti, ti,..,tiu) = Pi for all

n--1 n

u [ [to, tn]. Thus in particular, yt, t,. t ., ti) = rn(t,) = P.

n
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2.2 Riemannian B1zier curves

Following the previous format we introduce a Riemannian version of the de Casteljau
algorithm. Accordingly, let X be a geodesically convex subset of a Riemannian manifold
M. Let A = {P0 , P1 ,' "., P4} be a subset of X. Define y9o : [0, 1] -+ X by yi,(u) =
Pi. For 1 < r < n and 0 < i < n - r define 7i' : [0, 1]r - X to be the unique
geodesic with the property that 4ir(ul,u 2 ,' ",ur-1), 0) - -lr(Ul, u 2 ,. .,ur-1) and
ir (Ul, u21-, 1) = f+ri(Ul,u 2 , .. .,ur-1). The function -y : [0, 1]n -' X is called

the geodesic de Casteljau blossom associated with the set A. If A : [0, 1] --+ [0, 1]n is
the diagonal map, the geodesic Bdzier curve associated with X and the set A is the
function FI = -'o o A.

.2.3 Riemannian B-Spline curves

Given A = {PO, P1,' "., P4} contained in a geodesically convex subset X of a Rieman-
nian manifold M, and given knots tl < t 2 < ... < t 2n, define Yo : [tl, t 2n] -- X by
-/y(t) = Pi, for0 < i < n. Forl <r <n andr < i < n, define-7' : [t., ti+r+-rl]T -4X
to be the unique geodesic with the property that -Y! (ul, u 2 , ... , ur-1, ti) =-/-11 (U1, U2 ,*"
*,Ur-l) and -Yr(ulU 2,.. ,ur-1, ti+n+l-+ ) = -Yir-1 (u1,u 2 ,. •.,u,.-). The function
-/n : [tn, tn+,]'_ -+ X is called the geodesic de Boor blossom associated the set A.
If A : [t,, tn+1] -+ [tn, t,+ 1 ]n is the diagonal map, the geodesic B-Spline curve associ-]n =_ ryn A

ated with X and the points Pi is the function Fn - o A.
We have the following results, which follow from the fact that both the geodesic de

Casteljau and the geodesic de Boor blossoms are constructed from successive geodesic
combinations beginning with the set A = {PO, P1 ,'" Pp}.

Theorem 2.8 Given A = {P0 , P1 ,'" , P,, } contained in a geodesically convex subset
of a Riemannian manifold, if -yo : [0, 1]n --_ X is the geodesic de Casteljau blossom
of A, then -yo([O, 1]n) is contained in the geodesic convex hull of the set A.

Theorem 2.9 Given A = {PO, P1 ,'"., PnI contained in a geodesically convex subset
of a Riemannian manifold, if7 : [t,, t+ 1 ]n -+ X is the geodesic de Boor blossom of
A relative to a knot sequence tj < t2 < ... < t 2n, then 'Yo([tn, t,+ 1 ]n) is contained in
the geodesic convex hull of the set A.

Since each of the three blossoms are constructed successively from C' geodesics, it
follows that the blossoms and their restrictions to the diagonal are also of class CO.

Theorem 2.10 The geodesic Lagrange, Bdzier, B-spline curves are of class C' as are
each of their corresponding blossoms.

3 Examples
The impediments to implementation of these ideas depend on the manifold in question.
In all cases it is necessary that the points Pi should lie in a region in which it is possible
to construct geodesic arcs between points. The problem then reduces to that of finding
methods for such constructions. Even in cases for which this is possible, there is the
additional problem that many of the desirable properties associated with B-spline or
B~zier curves in 1R3 may have no direct analogs. Many properties such as the ability
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to subdivide a curve depend on the blossom being symmetric or multi-affine, and for
the generalizations presented here, this is seldom true. For the case of an orientable
2-manifold embedded in R 3 , there are in many cases good solutions to the problem of
finding geodesics, but different classes of surfaces lead to different solution. In this section
we mention a few. In the case that the manifold M is the 2-sphere S2 a preliminary
version of our results is reported in [5].

3.1 The sphere

In the case that M = S 2 , a small alteration to methods presented so far allows the
consideration of curves that lie off the sphere. Given points P and Q that lie off the
sphere consider radial projections to points P and Q and let ' : [a, b] --* S2 be a
geodesic with the property that ý(a) = P and ý(b) = Q. The curve -Y : [a, b] -* 1R3

defined by

'y(t) = ( t-a [l )

is called the Archimedian spiral connecting the points P and Q. To explicitly describe
the curve , set P = vl, (Q = v2 and for simplicity consider the parameter interval [a, b]
to be the unit interval [0, 1]. For < .,- > the standard inner product on R3 set

V3 = (< V1,V2 > Vl - v2)/(II< vlv 2 > VI - v211)

so that v3 is orthogonal to v1 and in the plane containing v, and v2 . Letting 0 =< v1 , v2 >

denote the angle between v, and v2 , the geodesic - connecting vi with v2 is defined by

(t) = cos(tO)v1 + sin(tO)v 3

(s( sin(tO) < vl, v2 > ) sin(tO)( co to) + /v~ v 212
11 < V1 ,V2 > V1 - V211 V 1 > V2-

The corresponding Archimedian Lagrange, B6zier and B-spline curves may now be con-
structed with the general algorithms of Section 2.

One of the difficulties that arise with Archimedian curves is that geodesic blossoms are
not necessarily symmetric or multi-affine. It is even not clear what these concepts might
mean in a geodesic context. Consequently, certain results that hold for normal B6zier or
B-spline curves that depend on these properties are no longer valid. In particular analogs
of the subdivision algorithms that allow one to determine control points of a portion of a
given B36zier or B-spline are not valid. However, it can be shown that a simple non-linear
change in the parametrization of the geodesic arcs, makes it possible to recapture most
of what is needed.

Definition 3.1 Given two points A and B on the sphere. Let C be the smaller arc of
the spherical geodesic joining A with B. The barycentric parametrization of C on the
parameter interval [a, b] is the function a: [a, b] , C defined by

a(t) =q(x(t)),

where x(t) = (6-t) A + (t-a) B and q : 1R3 - S2 is the radial projection q(x) = X
b-a b-a s v4u

In the following we prove a, spherical version of the Menelaus theorem.



CAGD techniques for differentiable manifolds 41

Theorem 3.2 Given 3 points Po, P1, P 2 on S2 let 7y: [0, 1] x [0, 1] -, 3 be the geodesic
de Casteljau blossom in which all geodesic arcs are given the barycentric parametrization.
Then y(s,t) = 7(t, s).

Proof: Observe that an elementary geometric argument tells us that:

"-y(s,t) = y2(s,t) = q((1-t)7n1(s)+t')l(s))

= q( (1-t)[(1 - s)Po + sPi] + t[(1 - s)Pi + sP2] )

and

-y(t, s) = y2(t, s) = q ((1 - s)+y(t)+s-1(t))

= q( (1-s)[(1 t)Po + tPi]+s[(1-t)Pl+tP2]).

And the result follows from the affine properties of ]R3. FJ

As an immediate consequence we have

Theorem 3.3 Given points Po, P1 ,'" , Pn on S2, the associated de Casteljau blossom,
in which geodesic arcs are given barycentric parametrization, is symmetric.

The conventional blossoming description of subdivision can now be employed. From
the blossom construction we can conclude that yj (0, 0, 0, 1,1 ., 1) = Pi. In par-

ticular, it follows that, for 0 < u < 1, the points Q = -yo(,0,0. ,0, u,u,l ... ,u)

describe a geodesic de Casteljau blossom which is parametrized to the interval [0, u]
and which, because of the uniqueness of geodesic arcs, equals the restriction of -yo to
[0,u]'. Likewise, for the interval [u, 1] the points Ri = -yo(u, u, u, 1, 1,.- 1) de-

termine a geodesic de Casteljau blossom which is parametrized to the interval [u, 1]
and which equals the restriction of -y to [u, 1]1 Therefore, if g : [0, 1] -* S2 is the
geodesic B1zier curve determined by P0 , P1,' ", P,, and if g = 0 o A, it follows that,
gl[Ou] : t -*-f'y(t,t,'",t, u,u,.-.,u) and gl[in,] : t -- yon(u,u,"',u, t,t,. -. ,t), for

i i

0< u <.
More generally and along the lines of the proof above, we have the following theorem

which allows all familiar properties of both B~zier and B-spline curves which have
descriptions in terms of their corresponding blossoms to carry over to the spherical
case.

Theorem 3.4 Let f : [0, 1]n --* - 3  be the Euclidean blossom generated by the de
Casteljau algorithm using points Pi E S2, 0 < i < n. Then 'yg = q o f.

3.2 Other surfaces

We briefly discuss two examples in which explicit descriptions of geodesics between points
are possible.

A developable surface S [4], described as the image of a function f : U -- ]R3 for
U an open subset of ]R2 , possess the characteristic, among others, that distances are
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preserved by the function f. Therefore, a geodesic in the surface f(U) may be considered
as the image of a straight line in the plane. If P0 , P1 ,." ", PF, are points in S, let Qi =
f-'(Pi), 0 < i < n. If C C U is the Lagrange, BWzier, or B-spline curve obtained
from the standard Euclidean versions of the algorithms, then it follows that f(C) is the
corresponding geodesic curve in S that would have been obtained using geodesic versions
of the algorithms that we have described.

For surfaces of revolution the description of geodesics between two points is rather
more involved. Let C be a curve in the yz-plane described implicitly by

Sf(y) = z
x=0 '

for (y, z) belonging to some open set U contained in the upper half of the yz-plane. The
surface S obtained by rotating C about the z-axis may be expressed as g-1(0) where
g : R x U --+ R is defined by g(x, y, z) = f(Vx +7 y2) - z = 0. In polar coordinates
letting u = VX 2 + y2 , we express S in the form

SX = lcos9
y =usinOz =f(u)

Let P = (u, cos01,ul sin90,f(ul)) and Q = (u2 cos0 2,u 2 sin0 2,f(u 2 )) be two points
on S. Then it may be shown that the geodesic connecting P with Q is the function
a: [ul, u 2] --* S such that a(u) (u cos 0(u), sin 0(u), f(u)), where for fixed uo,

O(u) = , 1-+-(f '(t)) 2 d +c',
1"0 t4  t2

and constants c and c' satisfy the following equations:

02-0, + -flU)2d

c'=ei-L +1+(f'(u))2 du.

U2 -- O 1 -•I4 -- U2

For complete details see [6].

4 Conclusion and future research
We have outlined a procedure by which conventional computer aided design constructions
may be extended to arbitrary Riemannian manifolds. In practice, there are difficulties.
In a given manifold points to be interpolated or approximated must lie in a region in
which it is possible to construct necessary geodesic arcs. Supposing this the case, one
then needs to find explicit descriptions of the geodesics. And then there is the question
of the additional characteristics which the curves might possess. The paper raises more
questions than it answers. In the case of a sphere, good results are obtained, and it
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is also possible to add variation that allows consideration of curves off the sphere but
which project radially to geodesic Lagrange, B6zier, or B-spline curves. It is also shown,
in the spherical case, that a change parametrization of geodesics results in blossoms that
retain the desirable characteristics associated with Euclidean blossoms. For surfaces of
revolution and developable surfaces, we know that geodesics can be found between points
so the geodesic blossom constructions will always exist. It is however unlikely that these
blossoms will be either symmetric or multi-affine; these characteristics depend on the
affine structure of ]R 3 . Thus, in the case of a general Riemannian manifold, although the
constructions may be valid, it is not clear that we will be able to employ fundamental
operations such as subdivision which depend on the symmetry of the blossom. We have
outlined three different methods of blossom construction, one for each of the algorithms
considered. In the Euclidean case, we know that there is a unique symmetric, multi-
affine polynomial that restricts to a given polynomial on the diagonal. This may not be
true in our more general setting.
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