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Abstract
A survey is given of algorithms for passing a curve through data points so as to preserve
the shape of the data.

1 Introduction
We consider the problem of passing a curve through a finite sequence of points. We want
the curve to preserve in some sense the shape of the data, i.e. the shape of the curve
gained by joining the data by straight line segments (which we call the 'piecewise linear
interpolant'). We do not consider the important problems of approximating the data
by a curve, or of shape-preserving interpolation by a surface. The short length of the
paper forces it to be selective. So we concentrate on actual algorithms for solving the
problem rather than related theory. Also we consider only algorithms where the curve
is defined explicitly, not implicitly either as the zero set of a function or as the limit of
a subdivision process (though there are, to our knowledge, extremely few such implicit
shape-preserving schemes).

In Section 2, we consider planar curves given by a function y = f(x), often rather
misleadingly referred to as 'functional interpolation'. There are numerous such schemes,
dating from 1966, with most of them prior to 1990. Our treatment is therefore very
selective. Section 3 deals with parametrically defined planar curves, for which the schemes
are fewer and more recent. Finally, in Section 4, we consider curves in three dimensions,
often called 'space curves'. Here the work is much more limited, dating only from 1997.

We note that in shape-preserving interpolation, the map from the data to the function
describing the curve must be non-linear. In what we call 'tension methods' the curve
can be constructed by a linear scheme for any choice of certain 'tension parameters'.
These parameters are then varied so as to 'pull' the curve towards the piecewise linear
interpolant until the shape criteria are satisfied. Though there are a few variations on
this theme, there is generally a clear distinction between tension methods and other
schemes, which we shall term 'direct methods'.

2 Functional interpolation

Given data
(xiy) E R 2, i = 0,..., ,N, xo < X< ... "<"2 XN, (2.1)
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we consider a function f : [x0, XN] --+ R satisfying

f(xi) = yi, i=O,...,N. (2.2)

For some reasons, perhaps the physical situation which f is intended to model, we
may wish the graph of f to inherit certain shape properties of the data. We now describe

these and other properties which it may be desirable for f to possess.

2.1 Desirable properties

Monotonicity. Here we require f to be increasing (respectively decreasing) if (yi) is
increasing (respectively decreasing). More generally we may require the scheme to be
'co-monotone', i.e. for i = 0,... ,N - 1, f is increasing (decreasing) on [xi,xi+1 ] if

yj •_ Yj+i (yj _> yi+l). Co-monotonicity has the consequence that the local extrema of
f occur exactly at the local extrema of (yi). Moreover if y' = yi+1, then f is constant

on [xi, xj+l]. These properties may be too restrictive and a weaker alternative is what
we call 'local monotonicity': for i = 1,... ,N - 2, f is increasing on [xi,xi+,] if

Yi-1 :_ Yi <! Yi+l •_ Yi+2 (and similarly for decreasing). Although this is not generally
stated, it is also desirable that for i = 0,... , N - 1, f has at most one local extremum
on (xix+).

Convexity. Here we require f to be convex (concave) if the piecewise linear interpolant is
convex (concave). More generally we call the scheme 'co-convex' if for i = 1,..., N - 2,
f is convex (concave) on [xi, xj+±] if the piecewise linear interpolant is convex (concave)
on [xi-1,xi+2]. It is also desirable in a co-convex scheme for f to have at most one
inflection in (xi,xi+i), 0 < i < N - 1.

Smoothness. By definition, the piecewise linear interpolant is shape-preserving, and so
the problem is trivial unless we require f to have greater smoothness than continuity, i.e.
Ck for k > 1. Since all the schemes use piecewise analytic functions, the &k condition
needs to be checked only at a finite number of 'knots', which generally include the data
points. We remark that smoothness and shape-preservation may not be compatible; e.g.
if for i =0,...,4, xi = i -2, y' = 1xil, and f is convex on [xo,x 4], then f(x) = lxi,
-2 < x < 2, and so is not C' at 0.

Approximation order. It is generally supposed that the data arise as values of some
unknown 'smooth' function g, i.e. yi = g(xi), i = 0,... ,N. Then we can consider how
fast the interpolant f converges to g as we increase the density of data values xi in the
fixed interval [a, b]. A scheme has approximation order 0(h'm ) if If -gil = 0(h m ), where
h = max{xi+l -x :i =0,...,N- 1} and the usual norm is jIFlI = sup{lF(x)l a <
x < b}.

Locality. In a 'global' scheme, the value f(x), for any x, generally depends on all the
data. In contrast, for a 'local' scheme, f(x) depends on the data values (xi, yi) only for
xi 'near' x. There may be advantages in local schemes, e.g. when data are modified or
inserted.

Fairness. It is often desirable that the curve is 'fair', i.e. pleasing to the eye, see Section

3.
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Other desirable properties are invariance under scaling or reflection in x or y, and
stability, i.e. small changes in the data produce small changes in f. There may also be
other constraints on f, e.g. f > 0 when yi Ž! 0, i = 0, ... , N.

2.2 Tension methods

Many tension methods are a modification of cubic spline interpolation, which we now
describe. Given data (2.1), there is a unique function f satisfying (2.2), where f is C2,
is a cubic polynomial on [x, xi+,], i = 0,..., N - 1, and satisfies suitable boundary
conditions at x0 and XN. The function f minimises if N(g") over a suitable class of
functions and this energy minimisation property is generally considered to give a fair
curve. Determining f requires solving a global, strictly diagonally dominant tridiagonal
system of linear equations.

Since cubic spline interpolation is not shape-preserving, in 1966 Schweikert [67] mod-
ified the scheme by replacing cubic polynomials on each interval [xi, xi+l] by solutions
of

f( 4 ) _ A/ff" = 0,

where Ai > 0. When Ai = 0, f will reduce to a cubic, while as Ai --* oc, f approaches
a linear polynomial. Thus Ai acts as a tension parameter and by making appropriate
choices of Ai large enough the function will preserve monotonicity and/or convexity
globally or locally.

Many papers have been written on Schweikert's tension splines giving, for example,
ways of choosing the values of the tension parameters, e.g. [68,57,46,60]. However the fact
that the method uses exponential functions can be seen as a drawback. An alternative was
introduced by Nielson in 1974 [55] by adjusting the minimisation property of cubic splines
to a minimisation problem involving also the first derivative. The resulting function,
called a v-spline, is also cubic on each interval [xi, xi+1 ] but only C'. However the form
of the C1 continuity gives extra 'smoothness' for parametrically defined curves and so
we discuss v-splines further in Section 3. By generalising the minimisation problem still
further one can gain a C' piecewise cubic interpolant with further parameters for gaining
shape properties [22].

The idea of using rational functions in tension methods was introduced by Sphth [69],
also in 1974, and put in a general setting of tension methods in [57]. From 1982-1988,
Gregory and/or Delbourgo produced a series of algorithms using rational functions, e.g.
[19,36,20,21,18]. We illustrate the ideas with an algorithm from [37]. Here f is C2 and
on each interval [xi, xi+)] it has the form, for some a, b, c, d,

a+ bt + ct 2 + dt3  x - xif(t) = , t
1 + Ait(1 - t) xi+1 - x"

For Ai > -1, i = 0, ... , N- 1, f can be determined as the solution of a strictly diagonally
dominant tridiagonal linear system (and hence the scheme is global). When all Ai = 0,
f reduces to the usual cubic spline interpolant, while as Ai --+ oo, f converges uniformly
to the linear interpolant on [xi, xi+1 ]. In general the approximation order is 0(h 2) for
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data from a C4 function. In the special case of monotone data, choosing

Ai = i + (f'(xi) +f (xi+))Xi+ - i, pi>-3, i=0,...,N-1,

ensures that f is correspondingly monotone, and for the choice [i = -2, f reduces to a
rational quadratic which gives optimal approximation order 0(h 4 ). Similarly for convex
data, f is also convex provided that each Ai satisfies an inequality involving f' (xi),
f'(xi+1 ), and choosing Ai appropriately (which requires solving a non-linear equation)
further ensures approximation order 0(h 4 ).

There are some more recent methods involving rationals, e.g. [58].
The idea of using variable degree to preserve shape was introduced by McAllister,

Passow and Roulier in 1977 [47,56]. They produce monotone, convex schemes of arbit-
rarily high smoothness by constructing a shape-preserving piecewise linear interpolant 1
with one knot between any two data points (and no knots at the data points) and then
defining the final interpolant on each interval [xi, xi+l] as the Bernstein polynomial of 1
of some degree mi. The idea was extended from 1986 by Costantini [8-10]. For k > 1,
mi" > 2k + 1, i = 0,..., N - 1, he constructs a shape-preserving piecewise linear inter-
polant 1 with knots at xi + k(xi+l - xi)/mi and xi+1 - k(xi+l - xi)/mi, i = 0,..., N- 1.
The final interpolant f coincides on each interval [xi, xi+,] with the Bernstein polyno-
mial of 1 of degree mi and is hence Ck (with f(U) (xi) = 0, j = 2,..., k). In [10] there is
a co-monotone, co-convex scheme in which the degrees mi can either be chosen a priori
or computed automatically according to the data.

The above schemes using variable degree are not strictly tension schemes in our sense
but in 1990, Kaklis and Pandelis [40] introduced a tension method by using the above
form for k = 1, i.e. on each interval [xi, xi+1 ] it has the form:

f(t) = f(xi)(1 - t) + f(xi+i)t + ct(1 - t)i + diti(1 - t), t = -- x
Xi+_! -- Xi

Here mi > 2 is an integer and for each choice of moi,... ,mY-l, the numbers ci, di are
chosen so that f is C2 , which requires the solution of a strictly diagonally dominant
tridiagonal linear system. When all mi = 2, this reduces to the usual cubic spline inter-
polant, while as mi --* oc, f converges uniformly to the linear interpolant on [xi, xi+1]
with order 0(m i 1) (or O(m- 2) if mi-1 , mi+, remain bounded). For further discussion
of variable degree shape-preserving functional interpolation, see [11].

Our final type of tension method was introduced by Manni [50] in 1996. The general
idea is to define f on [xi, xi+,] as

f(x) = pi (q 1 ((x)),

where pi, qi are cubic polynomials on [xi, xi+,] and qi is strictly increasing from [xi, Xi+l]
onto itself, so that the inverse qil is well-defined on [xi,xi+1 ]. For f'(xi) = di, i =

0,... , N, we require

p'(xi) =Adi, qi(xi) = Ai, p'(xi+1) =pidi+, qi(xi+i) = i,

for parameters Ai > 0, pi > 0. For Ai = pi = 1, we have qi(x) = x and f reduces to a
cubic on [xi, xi+l], while for Ai = pi= 0, f becomes linear on [xi, Xi+1].
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In [50], the values do,..., dg are assumed known (or estimated from the data values)
and the scheme is local C', gives necessary and sufficient conditions for the values of the
parameters Aj, pi for co-monotonicity, and has approximation order O(h 2) when g is C2

and generally O(h 4 ) when g is C4.
Manni and co-workers have written a series of papers using the same idea, [51,53,54].

For example in [45], the values di are not assumed given but are chosen to ensure that
the function is C 2 , thus providing a locally monotone, co-convex global scheme which
generalises usual cubic spline interpolation; while in [52] two further knots are inserted
in each interval [xi, x+ 1 ] to produce a C2, locally monotone, co-convex local scheme
which interpolates values of f(U)(xi), j = 1, 2, i = 0, . . . , N.

2.3 Direct methods

In 1967, Young [71] considered shape-preserving interpolation by polynomials and a num-
ber of papers have appeared since on this topic, e.g. [59] gives a constructive proof of
the existence of a co-monotone interpolant with an upper bound on the degree required.
However for a practical algorithm, using a piecewise polynomial offers much more flexib-
ility than a single polynomial. Numerous papers have been written using such polynomial
splines and we mention briefly only a few.

By inserting extra knots between data points, a convexity preserving scheme with
C2 cubics was given by de Boor [4, p.303], and co-monotone, co-convex schemes with
C1 quadratics in [48,49,66]. C' cubic splines with knots at the data points are used for
co-monotonicity in [25,5,24,70], (the last of these using a variational approach), and for
both co-monotonicity and co-convexity in [16,17]. We also recall the methods using spline
functions of variable degree with knots between the data points to obtain interpolants
with arbitrarily high smoothness which were discussed under tension methods.

Finally we note that following the paper [62] which was as early as 1973, Schaback
[63] gives a C2 co-monotone, co-convex scheme which uses a cubic polynomial on any
interval [xi, xj+I] where an inflection is needed, and on other intervals employs a rational
function of form quadratic/linear.

3 Planar curves

Given data
1i E R2 , i = 0,..., N,

we consider a curve r : [a, b] -- R2 satisfying
r(ti) =Ii, i = 0,..., N, (3.1)

for values a = to < tj < ... < tN = b. For a closed curve the situation is extended
periodically so that

Ii+N =10, ti+N =ti, i E Z, r(t+b-a) =r(t), tc R.

3.1 Desirable properties

Shape. For this case it is not usually relevant to consider preservation of monotonicity.
We say a scheme is 'co-convex' if the curve r has the minimum number of inflections
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consistent with the data. In practice, schemes satisfy the somewhat stronger condition
that for any 0 < i < j - 2 < N - 2, r is positively (negatively) locally convex on
[t4+, tj-i] if the polygonal arc joining I,.. ,Ij is positively (negatively) locally convex.
For more details on this and other desirable properties, see [29].

Smoothness. We shall call the interpolating curve Ck for k > 0 if the function r is

Ck. A CO curve r we shall call G1 if the unit tangent vector is continuous, and G2 if, in

addition, the curvature is continuous. A Ck curve r is Gk, k - 1, 2, provided that the
parameterisation is regular, i.e. r' (t) # (0, 0), which is generally desirable. It is usually
sufficient to have Gk, rather than Ck, continuity if only the appearance of the curve is
important and the choice of parameter t is not significant.

Fairness. Planar curves often arise in computer-aided design where it may be par-
ticularly important that the curve is pleasing to the eye. Though this is subjective,
various criteria have been suggested to be relevant, such as magnitude, rate of change
or monotonicity of the curvature. Some schemes include 'shape parameters' which can
be manipulated by the designer to modify the shape of the curve.

Approximation order is not important in the context of design when the data are
not considered to be taken from some unknown curve. Approximation order is related
to reproduction of polynomial curves, and a related property for planar curves is re-
production of arcs of circles (or more generally conics); this cannot be done exactly by
polynomials but it can be achieved by using rationals.

Locality and other desirable properties are similar to the functional case as described
in Section 2.1, though it is generally more appropriate that the invariance is under a
rotation and the same scaling in both x and y.

3.2 Tension methods

In Section 2.2 we mentioned Nielson's v-splines [55]. Applying this scheme for both
components of r gives a function r which is cubic on each interval [ti, t +i], is C1 and
satisfies

r" (tt) =r" (ti• ) + ir'(ti), i= l.,N -1,

where vi > 0. This condition is sufficient for G2 continuity of r (assuming regular para-
meterisation). When all vi = 0, r will reduce to the usual C2 cubic spline interpolant. As
vi --+ oc, the curve is 'pulled tight' at Ii and as vi, v'i+1 -* oo, it approaches the linear
interpolant on [t4,t+i.

The scheme in [37] by Gregory which was mentioned in Section 2.2 was adapted to
the planar case in [38]. Other schemes using rationals were proposed by Clements in
[6,7], where r is a C2 curve which on each interval [ti, ti+1 ] has the form, for some a, b,
c, dE Re

r(t) a(1 - S)3 ds 3  t -ti

r~~t + b(1 )+c
wise + e wi( -t) tn 1sio ti+p -t tia r

where wi _> 0 are the tension parameters.
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The variable degree tension method of [40], also mentioned in Section 2.2, was adapted
to the planar case in [41], and extended in [27] to allow the designer to obtain a 'fair'
curve by minimising the number of changes in the monotonicity of the curvature.

3.3 Direct methods

The papers [34,35,28,23] give local, G2 co-convex schemes, e.g. in [28], a rational cu-
bic/cubic is used on each interval [ti, ti+l] and the tangent vectors and curvatures are
stipulated by the algorithm to ensure that the convexity conditions are satisfied and
circular arcs are reproduced, with the possibility of modifying the tangent vectors and
curvatures further as shape parameters.

Following an earlier scheme in [64], Schaback in [65] gives a global G2 co-convex
scheme which uses a cubic polynomial on any interval [ti,ti+l] where an inflection is
needed, and on other intervals employs quadratic polynomials.

Sapidis and Kaklis [61] give a G2 co-convex scheme by interpolating by a piecewise
quintic curve tangent directions and curvatures gained by their tension method [41].

In [1] a local, co-convex G2 scheme is given which uses polynomials of degree six
and which attempts to obtain a fair curve by imposing conditions on the curvature to
minimise measures of fairness. Finally we note that in [12] Costantini gives an abstract
theory and general purpose code.

4 Space curves

Given data
1i E R3, i = 0,. . ., N,

we consider a curve r : [a, b] -+ R3 satisfying condition (3.1) as before.

4.1 Desirable properties

What is meant by 'shape-preserving' is not so clear for space curves as for the planar
case. Criteria were introduced by Kaklis and Karavelas [39] and extended by Ong and
the author in [31]. We shall sketch these below. They are discussed in further detail in
[30], where some further extensions are suggested. We write, for appropriate indices i:

Li = Ii+l - Ii,, Ai = det[Li-l, Li, Li+l], Ni = Li-I x Li.

Torsion. We ensure that the curve is 'twisting' in the same manner as the piecewise
linear interpolant by requiring that if A, :$k 0, then the torsion of r has the same sign as
Ai on (ti,ti+l).

Convexity. Let K(t) = r'(t) x r"(t), a < t < b.

We require that for 1 < i < N - 1, K(ti).Ni > 0, which means that the projection of
the curve r onto the plane of Ii-1, Ii, Ii+1, has the same sign of local convexity at 1i as
the polygonal arc Ii-1i'i+1. Moreover if Ni.Ni+l > 0, we require

K(t).Nj > 0, j = i, i + 1, ti !_ t <_ ti+l,
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which implies that the curve r has the same sign of local convexity on [ti,ti+l] when
projected in any direction ANi + (1 - A)Ni+I for 0 < A < 1. Finally we require that
if Ni.Ni+I < 0, then for j = i, i + 1, K(t).Nj has exactly one sign change in [ti, ti+1 ],
which imples that each of the above projections of r have just one inflection.

Smoothness. This is as for planar curves, except that we call the curve G 3 if it is G2

and, in addition, the torsion is continuous. Other desirable properties are similar to the
planar case.

4.2 Tension methods

Although interpolation by space curves with a special shape is considered in [44], the
first specific shape-preserving interpolation scheme by space curves was due to Kaklis
and Karavelas [39], who adapted the variable degree tension method of [40] to give a
C2 method which was also G3, but at the expense of zero torsion at the data points. In
[42] the same authors adapted Nielson's v-splines to the three dimensional case to give a
curve which is C' and G2 . The paper [14] also uses variable degree for tension parameters
but gives a C3 scheme in which the limiting curve as the tension goes to infinity is not
the piecewise linear interpolant but the shape-preserving interpolant given by either of
the above two schemes. In [15] a C 3 scheme is also given but here the components of r
on each interval [ti, t+il] lie in the linear span of the functions

(1 - u), (1 - U) m, (1 - u) i-lu,(1 - u)u=i+1-l, ' 1 t + -

When mi = mi+i = 5, this reduces to a quintic polynomial. As mi, mi+1 -* o, it tends
to a linear polynomial and then the curve r approaches the piecewise linear interpolant
on [t4,t+ 1].

The paper [26] also uses variable degree splines with degree on each interval at least
five, and the curve r also converges to the piecewise linear interpolant as the'degrees go
to infinity. However here the curve is C4, which the authors feel may give extra fairness
to the curve due, for example, to lowering the maximum absolute value of the curvature.
Variable degree polynomial splines are also used in [13].

4.3 Direct methods

Following an earlier scheme in [31], Ong and the author gave a local G2 scheme in [32]
which employed a rational cubic/cubic between data points, extending the ideas of the
planar scheme in [28]. This was further extended to a local G3 scheme using a rational
quartic/quartic in [43]. In [33], the degrees of freedom- inherent in the scheme in [32]
were used to optimise a fairness measure. Finally we mention the papers [2,3] which give
local G3 schemes using a piecewise polynomial of degree six, also allowing optimisation
of a fairness measure.

It will be noted that many of the above papers are extremely recent and it is hoped
that the unavoidable lack of detail here will serve to tantalise readers to discover for
themselves more of this rapidly developing field.
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