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Abstract
Turbulent channel flow is used to study energy-containing-range modeling using a
hybrid RANS/LES approach. The hybrid model relates the mean component of an
LES-type subgrid diffusivity to the turbulence diffusivity from RANS via a
transfer function. Details of this transfer function in the energy-containing-range of
the turbulence are shown to be very important when modeling coarsely resolved
flows. Three transfer function models are compared. One interpolates the
turbulence diffusivity between the LES and RANS limits using an algebraic
blending. The second uses von Karman's empirical fit to the turbulent kinetic
energy spectrum to diagnose energy-containing-range structure. The third uses a
modified Smagorinsky subgrid model corrected to have the proper mean time scale
as diagnosed from RANS. Our Reynolds number is 640, based on the channel half
height and on the friction velocity. Comparison of mean-field and root-mean-
square statistics to other studies clearly identify the mean time-scale model as the
best performer.

1. Introduction
Reynolds-Averaged Navier-Stokes (RANS) modeling is the contemporary
workhorse for CFD. The demands on a RANS model can be severe, since it must
accommodate the geometric scales of a flow under complicated conditions. Most
RANS models perform well for flows similar to the ones for which they are tuned
but fail, often severely, for other flows. Large-eddy simulation (LES), as an
alternate technology, resolves the geometric scale of a flow modeling only the
effects of the inertial range scales. The cost of a LES can be quite high because of
high grid density and the need to collect statistics from instantaneous solutions.

Recent work proposes a middle ground between RANS and LES. Spalart, et al.
(1997) and Speziale (1998) have shown that a RANS code can be used to give
LES-like solutions if the RANS eddy diffusivity is decremented appropriately
using a grid-resolution-dependent transfer function. It is constructed so that in the
coarse-grid limit, when no turbulence fluctuations are resolved, the model
becomes RANS. Similarly when the energy-containing-range scales are resolved,
the model becomes a Smagorinsky-type LES. Peltier, Zajaczkowski, and
Wyngaard (2000) implemented a hybrid RANS/LES model based on that idea.
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We evaluate three candidate transfer functions and select from them a "best"
choice. Fully-developed channel flow at Reynolds number 640, based on channel
half height and on friction velocity, is used as the test case, since the expected
results are well known from the literature.

2. Mathematical formulation
2.1 The Transport Budgets
The filtered, incompressible Navier-Stokes equations are solved for the resolvable
scales of fully-developed turbulent channel flow. The flow is divergence free to
enforce continuity. The equations are

~ir 1 r GSS ~1r

ui,* +R(ui" ) -1 and uf, 0. (1),I IRe. ,J

The superscript "r" refers to "resolvable scale". The capping tilde is used to denote
a variable with both mean and fluctuating parts. The "-1" on the right side is the
mean pressure gradient nondimensionalized on the channel half-height and on the
friction velocity. The pressure gradient term on the right side of (1) is the deviation
from the mean gradient. Re, is the appropriate Reynolds number. Noslip
conditions are enforced at the lower and upper walls of the channel. Wall functions
are not used. The streamwise and cross-stream directions are periodic.

2.2 The Subgrid Model
We use an eddy diffusion model for the subgrid stress in (1): Fij =-2iGS S2ii,

where S ~ = r ~3 + i') / 2 is the resolvable-scale strain-rate tensor.

Contributions to the eddy diffusivity are from direct interactions with the mean
flow and interactions within the fluctuating field, VsTs -MS + jFL Peltier and

Zajaczkowski (Reg. Paper #81 of this conference) show that V FL >> V-AS in the
fine-grid limit (LES). Traditional LES subgrid models (like the Smagorinsky
model) already perform well for filter scales in the inertial range, so no additional
work must be done to identify a suitable model for V FL. In the coarse grid limit,

VFL << Vms (Peltier and Zajaczkowski, Reg. Paper # 81), so direct interactions

with the mean straining field are of primary importance. V-ms can be inferred from
RANS:

j3s = T(A, A,q)7R•ANs . (2)

T(e, A, q) is an appropriate grid-resolution-dependent transfer.

A diffusivity is the product of the characteristic length and velocity scales for the
subgrid turbulence. For RANS, V RNS = q £, where i is the dissipation length and
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q is the square root of the turbulence kinetic energy. Note: the familiar coefficient,
C, = 0.09, and any viscous damping function are absorbed in our definition of t.

Similarly, for a partially resolved flow field with characteristic length and velocity

scales, A and v, the mean diffusivity is Vms = v A giving
vA

T(tA, 77) = -- (3)qg

for the transfer function. Again, coefficients like the Smagorinsky constant,
C, = 0.065, and damping functions are absorbed in A, a filter scale proportional

to the characteristic length of a local grid-cell volume. The velocity scale, v, is the
square root of the subgrid turbulence kinetic energy. Dependence of (3) on the
Kolmogorov scale, T!, arises because of the viscous cutoff scale for turbulence near
"1l.

We use the traditional Smagorinsky eddy-diffusivity closure of LES whose
velocity scale is inferred from the strain-rate invariant, v=A.S. The
Smagorinsky model breaks down under coarse resolution, apparently because this
velocity scale is inappropriate in the energy containing range. Our modeling effort
seeks to correct the Smagorinsky closure by defining a more appropriate energy-
containing-range velocity scale:

VTSG VT ±aA n GRA NS -
VTc = VTsa + T(t, A, 1) VTR -- VT) (4)

where VMS =A (A S), the Smagorinsky model applied to the mean flow.

S = (UW, + U j.) /2 is the mean-field strain-rate invariant (from RANS). Three

models for T(t, A, 17) are evaluated in this study.

Model I
Following Peltier et al. (2000), we diagnose v by integrating the inertial-range

form for the turbulence kinetic energy spectrum, E(iK) = -le 2/3 K'-5/3 between the

filter-scale wavenumber, icA = 2,1'/A, and a dissipation-range cutoff

wavenumber, c ,, =2A7/A17, where A,, =0.177 (see Hinze, 1975, p. 224).

Denoting the inertial-range form of the transfer function I(1,A, i), we blend

between the inertial range and RANS via:L I(.e,A,77) 2 ]1/2

T(t, A, q) = 1+I(t,A,77) 2 j " (5)

The power of 2 used in the blending function comes from Peltier et al.'s (2000)
preliminary optimization of the model.
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Model 2
By integrating von Karman's empirical fit to the turbulence kinetic energy
spectrum from 1C,, to Kc,,, we can compute T(i, A, 7) directly. Von Karman's

spectrum is given by (Hinze, 1975, p. 244):

E(ic=C, (C/I I. )4  . (6)
K[1+(K/Keý)2171/6

The coefficient CvK and the wavenumber K are set by requiring (6) to have the

proper inertial range amplitude, _ 62/3, in the limit of very large wavenumbers and3 •

by requiring the spectrum to integrate to the turbulent kinetic energy, q2; the
dissipation rate, e, and the turbulent velocity scale, q, are provided by RANS.
One drawback to using (6) is that an inertial range will be imposed for all
Reynolds numbers, even very low Reynolds numbers for which an inertial range
does not exist.

Model 3
Our final model adopts the Smagorinsky length scale for A but replaces the

incorrect time scale in (4), S-', with the turbulence time scale from RANS, £/q:

VFTs =A A-jq.,4 T(iA, (A )2. (7)

3. Numerical Method
A finite difference discretization of Eq. (1) with discretized boundary conditions
and turbulence modeling is solved. The solution procedure follows the fractional
step approach outlined by Rai and Moin (1991); however, a linear blending of
second-order accurate weighted-average central differencing with first-order
accurate upwind differencing is used for the nonlinear advection terms for values
of the transfer function greater than 0.9. This range was chosen by numerical
experiment emphasizing the need to support turbulence scales of motion while
retaining stability for very coarse grids. Explicit dependence of the blending on
cell Peclet number was not used. The code was validated based on the previous
study by Peltier et al. (2000) and based on comparisons to other experimental and
numerical data.

4. Numerical Results
We use fully developed channel flow at Re=640 based on the friction velocity and
on the channel half height as our test problem because this case is common in the
literature and is a simple flow field that emphasizes all of the difficulties inherent
in modeling wall bounded flows. The domain size is 29 x / x 2, similar to cases
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studied by Moin & Kim (1982), and
our grid resolution is 42x23x65. 1.0

The wall-normal direction is aligned 0.8_/

with our z coordinate, which uses / -

hyperbolic tangent stretching toward 0.6 .... _,/ __.

the solid boundaries. The near-wall ,
S0.4 ____

spacing is prescribed to give y+ --1 4

for the second grid point. Four cases 0.2 I . .°,

are compared: our three transfer 0.00 .0 2.0

functions and a baseline case using a 0.0 0.5 10A ,. 2.0

traditional Smagorinsky subgrid [
model. Since the RANS statistics are Figure 1 T(e, A, q) vs A/t
stationary, the RANS input data is
computed apriori.

Figure 1 presents the three 4

candidates for T(t, A, q7) plotted

as a function of A/f. The Peltier 2 _

et al. (2000) and von Karman
formulations transition to RANS -------

much slower than the mean time 0 1o , ,

scale model (Model 3). For grid Fi2ure 3 Profiles of root-mean-sauare velocitv

resolutions giving A/t = 1, the

mean time-scale model becomes
25

RANS, whereas, the Peltier et al. • 2 .........
(2000) and von Karman models -, . ..20

use only 40% and 60% of the 0
RANS diffusivity. ,

Mean-field statistics are ,0,'
presented in Figs. 2 and 3. The _I____ 2_ Mean__________________________i_
Spalding profile is included in Fi2ure 2 Mean velolcitv profiles plotted against
Fig. 2 for reference. The
Smagorinsky baseline case overshoots the Spalding profile in the buffer layer but
recovers a log-law slope in the logarithmic layer. The Peltier et al. (2000) and von
Karman models also overshoot the Spalding Profile in the buffer layer, then
recover toward the channel core. The mean time scale model tracks the Spalding
Profile well across the domain though a mild undershoot is apparent in the buffer
layer.
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The peak values of our root-mean-square (rms) statistics (Fig. 3) agree well with
observations from Moin & Kim (1982): 2.4, 1.3, and 0.9 for the longitudinal,
cross-stream, and wall-normal rms velocities. Moin & Kim (1982) show that the
horizontal velocity rms values peaks near y' - 30 in agreement with our mean
time-scale model. The peak location for the transfer functions based on Peltier et

al. (2000) and the von Karman spectrum occurs near y' =-20. Moin & Kim
show that the cross-stream and wall-normal velocity rms peak locations occur near
y+ = 120, similar to our results. Only the mean time-scale model yields an rms

value for the horizontal velocity at the peak near the 2.4 presented by Moin & Kim
(1982). Each of the other models at our grid resolution overshoot the target value
by between 58% to 83%. It is difficult to distinguish significant quantitative
differences for the other rms components.

5. Conclusions
Three transfer functions relating the mean turbulence diffusion from direct
interactions with the mean straining field to the eddy diffusivity from RANS were
evaluated. They represent 1) a simple blending to interpolate between the RANS
and LES limits, 2) use of von Karman's spectrum to diagnosis the proper velocity
scale, and 3) a correction of the mean time scale from the Smagorinsky model
using the turbulence time scale from RANS. Our results showed clearly that Model
3 agreed best with accepted physics. We recommend that Model 3 be used for
future work using this hybrid RANS/LES approach.
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