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MAGNETOHYDRODYNAMIC MIXING LAYER
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Univeristé Libre de Bruxelles, Statistical and Plasmas Physics,
Bld du Triomphe, Campus Plaine - CP 231,

B-1050 Brussels, Belgium

Abstract. We present LES results of the evolution of a decaying magneto-
hydrodynamic (MHD) mixing layer using dynamic eddy-viscosity subgrid
scale models. The LES results are obtained using a spectral code with a
323 resolution and are compared to a direct numerical simulation (DNS)
with 1282 Fourier modes. The evolution of the kinetic and magnetic en-
ergies is presented and their profiles along the inhomogeneous direction is
also discussed.

1. Introduction

MHD is recognized as a valid approximation in various problems of plasma
physics such as nuclear fusion, astrophysics, geophysics, ... In many cases,
highly turbulent processes are encountered and the magnetic Reynolds
number R, characterizing the magnetic turbulence can reach values rang-
ing from 10® to 10'2. For such values, the use of DNS for investigating
the MHD turbulence is inappropriate. In this context, developing the LES
technique, which has been already widely used in fluid mechanics, appears
to be an elegant solution for solving the incompressible MHD equations:

Oyu; = —8j (ujui - bjbi) + 1/V2ui — Oip (1)
by = —0;(ujb; — bju;) + Vb (2)
where b; = B;/./pio denotes the components of the reduced magnetic field,
p is the constant density and p represents the sum of the hydrodynamic

and magnetic pressure bb;/2 usually evaluated by enforcing the incom-
pressibility condition (d;u; = 0). The parameters v and 7 are the kinematic
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viscosity and the magnetic diffusivity, respectively. Although LES has al-
ready been adapted to MHD (Theobald et al., 1994; Agullo et al., 2001;
Miiller and Carati, 2001), its use has been limited to homogeneous turbu-
lence. In this work, we explore the capabilities of this technique for inho-
mogeneous flows. The particular case treated here is the mixing layer. Our
choice is motivated by the fact that interactions between regions of different
turbulent activities are very commonly observed in many geophysical and
astrophysical problems. Our choice is however also motivated by practical
computational arguments. Indeed, the mixing layer can be computed with a
spectral code (fully de-aliased) for which the modelling issues do not inter-
fere too strongly with the numerics. The mixing-layer we have considered is
the interface between two regions of almost homogeneous turbulence with
different mean energy and different energy spectra. In our case, the direction
of inhomogeneity will be oriented along the y-axis. The u; and b; fields are
initialized to resemble a magnetohydrodynamic mixing layer by adapting
the well-documented hydrodynamic case of Veeravalli and Warhaft (1989)
(see also, Briggs et al., 1996).

2. LES equations

Within the framework of LES, a filter kernel is applied to the MHD equa-
tions in order to obtain a set of equations for the resolved quantities. Here,
because our code is spectral, we adopt the sharp fourier cut-off for the
filtering operator and the filter width is noted by A. The filtered MHD
equations thus read:

Ob; = —Bj(ﬂjzi - )+ 7]V2b 3 iTij 4)

ou; = —31'(%]_':'; b;b;) + AL U; — O;p — aﬁ;-‘,- (3)
Ui
In contrast with traditional notations, we have explicitly expressed that the
non-linear term is filtered since our code is fully de-aliased. Also, we have
explicitly written the filtering operator on the subgrid-scale stress tensors
Ty = (W — ;) ~ (bibj —bib;) and 72, = (u;b; —w;b;) — (u;b; —u]b ) for
two reasons. First, this might avoid some confusion because the notation
7;; usually refers in the Navier-Stokes case to the term w;u; —u;%;. Second,
since 7;; has to be computed on the LES grid, it is unavoidably a filtered
quantity. Those terms account for the effects of the small scales on the
large scales and cannot be computed directly from the resolved quantities.
Therefore, in order to close the equation (3) and (4) , we need to model
them.
The model proposed here is based on the eddy-viscosity assumption
and is referred to as the Kolmogorov model (Agullo et al., 2001). One
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uses therefore a MHD-generalization of the Smagorinsky model with Kol-
mogorov scaling for the eddy-diffusivities:

7 o~ 2085y (5)
o~ —20AYW (6)

Tij

where ?ij is the symmetric part of the filtered velocity gradients and Wij
is the anti-symmetric part of the filtered magnetic field gradients. We have
adopted the MHD-extension of the dynamic procedure (Germano et al.,
1991; Lilly, 1992) for computing the parameters C; and Cs. To that end,
we introduce a second filter referred to as the test-filter and whose action
is noted by ~ . The test filter is also a Fourier cut-off with A = 2A.
Bccduse of the propeltles of the Fourier cut-off filters, the following relation

- = 7% can be used to simplify the notation. The application of the
ﬁlter - to the MHD equations introduces two additional unknown stress
tensors, T“ and T” They will be referred to as the subtest-stress tensors

and their deflmtlons are similar to 7;; and ?fj for test-level quantities. They
are assumed to be modeled as follows:

TE ~ —20,AY35; (7)
T ~ —20,AY3W;. (8)
The Germano identities obtained for the stresses 7 and T thus read:
~ au -
-7 = Ly (9)
T =7y = ng (10)

v/vliere E?] = ("E/z'\ﬁj — az'ﬁ]) - (EZE] ——3{@) and EZ = (ﬁ—z(_)J - ﬂj)}) — (?)_[’IIJ —
,b\iﬂj). These expressions can be used to evaluate C) and C5 if we assume
that C7 and Cy are independent of the filter width. Here, C; and Cy are also
assumed to be function of the inhomogeneous direction, i.e. the y-direction,
and are chosen to minimize the errors defined as

Quly) = (T4 =74 — L) )az (11)
Q2(y) = (T} g = Tingj) Yoz s (12)

where ( )., represents the average over the zz-plan.

3. Initial Conditions

The velocity and magnetic fields are initialized using the same procedure.
We will thus discuss this procedure for a generic field denoted ¢. In the
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following, both the three-dimensional ¢(kz, ky, k) and the two-dimensional
&(kz,y,k,) Fourier transforms of this field are used. For isotropic turbu-
lence, the averaged amplitude of c(kz, ky, k,) only depends on the norm of
the wave vector k =,/E2+k2+k2 : (|c(ky, ky, k2)|?) = A%(k). Also, the aver-
aged amplitude of é(k;,y, k;) only depends on the norm of the wave vector
perpendicular to the y-axis ky =/k2+2 : (|c(kz,y, k.)|?) = B%(kL). The
relation between these two amplitudes is readily derived from the Parseval
theorem:
+o0
B%(k,) = / dkyA%(1/k% + k2), (13)
—00

We also know that for isotropic turbulence, the field amplitude A%(k) is
related to the energy spectrum E(k) = 2wk?A%(k). Hence, if the statistical
properties of the field slowly vary along the axis y, we can assume, in a first

oo E ( \) : K ? y)

2 —
B (klay) - 57_[_' o dky ki+k5

In our case, the energy spectrum will be given by
kle—k/?
(¢* + k1712

The y-dependence is controlled through the parameters: A = A(y),
a = a(y) and q = ¢(y). The values of these parameters have been chosen
so that the initial conditions mimick the experimental fields produced by
Veeravalli and Warhaft (1989) using the 3:1 grid. They are constant in
the two regions corresponding to the quasi-homogeneous layers and vary
continuously in the mixing layer in order to connect smoothly the two
quasi-homogeneous layers. They are chosen so that the ratio of turbulence
intensities is about 6 while the ratio of typical lengths (corresponding to
the spectral energy peak) is about 3.

The velocity and magnetic field are initially uncorrelated. However, tur-
bulent phases are build using hundred time steps for which both u; and b;
are advanced in time and then rescaled to the desired amplitudes B?(k_,y).

E(k,y) = A (15)

4. Results

In order to assess the LES results, we have performed a 1282 DNS in which
the u; and b; fields are initialized with the procedure described in the pre-
vious section. The same spectra and the same set of parameters as in (15)
have been chosen for the velocity and magnetic fields. The kinematic vis-
cosity and the magnetic diffusivity are identical (v = n = 4.1073) so that
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Figure 1. Evolution of the kinetic (top) and magnetic (bottom) energies as a function of
time using the K-K model (dashed line), the K-NO model (dotted line) and the NO-NO
model (dot-dashed line). The DNS filtered to 32% modes is represented by the symbol o.

the Prandt] number=1. We present results for three types of LES. The
first one, hereafter referred to as the K-K model, uses the Kolmogorov scal-
ing (5) in both the equations for %; and b;. It was however realized that
this model is too strongly dissipative as long as the magnetic energy is
concerned. This has motivated the used of the Kolmogorov model for the
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Figure 2. Profile of the kinetic (top) and magnetic (bottom) energies along the inho-
mogeneous y-direction at ¢ = 1.1. The DNS filtered to 32% modes is represented by the

solid line.

velocity equation only, while neglecting the effect of the subgrid-scale in the
equation for b;. This model is referred to as the K-NO model. Finally, in
order to emphasize the importance of the model, results obtained without
any model (referred to as the NO-NO model) are also presented. Figure 1
shows the decay of the volume averaged kinetic and magnetic energies as a

function of time.
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Figure 8. Kinetic (top) and magnetic (bottom) energy spectra at ¢ = 1.1. Symbols are
the same as in Fig. 1.

We can see that the K-K model predictions agree reasonably well with
the filtered DNS as long as the kinetic energy is concerned. However, this
model appears to dissipate too much magnetic energy. The K-NO model has
a much reasonable behavior for the magnetic energy and it even improves
slightly the prediction of the kinetic energy.

Figure 2 shows the profile of the energies along the anisotropic direction
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at time ¢ = 1.1 for which about 50% of the initial energy has been dissi-
pated. We observe the same trends as in Figure 1, i.e. the kinetic energy
profile predicted by the K-K model is quite close from the filtered DNS
results, while the magnetic energy profile is significantly below the DNS
filtered results. Again, using the K-NO model significantly improves the
agreement with DNS data for both the energy profiles.

We also present the energy spectra at the same time which are quantities
rather sensitive to the modeling (Figure 3). Indeed, for the NO-NO model,
the expected piling up of the energy in the high wave vector modes is
observed for both the kinetic and magnetic energies. Here also the best
performances are obtained when using the K-NO model.

5. conclusion

We have performed a preliminary study of a magnetohydrodynamic mixing-
layer LES. We have proposed the use of the Kolmogorov model for which the
parameters were computed by the MHD-extended dynamic procedure with
an explicit dependence of the parameters on the inhomogeneity direction.

The results clearly show that the K-NO model outperforms significantly
the other models. This seems to indicate that the modelling of the subgrid-
scales in much more important for the velocity than for the magnetic field.
Our preliminary results seem also to demonstrate that the effects of the
subgrid-scales in the magnetic field equation cannot be appropriately mod-
elled in terms of a simple eddy magnetic diffusivity.
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