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2D-DNS OF QUASI-2D TURBULENCE IN SHALLOW WATER
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J.M. Burgers Centre, Delft University of Technology,
The Netherlands
WLIDelft Hydraulics, The Netherlands

Abstract

Through a series of cases, we investigate the possibilities of the shallow-water
solver Delft3D-Flow of simulating the evolution of (quasi-)2D turbulence in
shallow water subjected to internal and external friction and forcing.
This paper presents the simplest case, namely the 2D-DNS of laboratory
experiments of freely-evolving 2D turbulence, initiated by a rake in a shallow
fresh-water layer on top of a salt-water layer in a square 1* 1 m2 basin (Maassen
2000). Tabeling et al. (1991) report similar experiments in a fluid with a free
surface but initiated by vortices counter-rotating in a chessboard arrangement.
Likewise, our depth-averaged free-surface simulations are initiated by random as
well as by chessboard vortices. We compare the temporal evolution of the
simulated vorticity field in a viscous fluid with observations as well as with
simulations of Clercx et al. (1999) dedicated to incompressible 2D turbulence
simulation with a rigid lid. Theirs and our simulations agree with the
experimentally observed evolution of vorticity into just two vortices with
opposite rotation. All simulations neglect the friction at the density interface and
exhibit lesser decay of kinetic energy than observed in the experiments of
Maassen (2000).

1. Introduction
Based on the hydrostatic-pressure assumption, the shallow-water solver Delft3D-
Flow has been extensively used for modeling the depth-averaged or 3D flows in
civil-engineering applications.
For better assessment of ship traffic, structural stability, sediment transport,
dredging operations and algae blooms, there appears to be a growing interest in
simulating more details of the flow such as the temporal and spatial pdpf's of
horizontal velocity, bed-shear stress, mixtures of dissolved or suspended
constituents etc.
Rather than developing 2D turbulence closures, we prefer resolving and
simulating most of the horizontal flow patterns. Although, practical feasibility
demands that we maintain modeling the 3D turbulence in the orthodox manner
using partial-slip, bed friction and 3D turbulence closures for boundary-layer
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type of flows. We define the latter approach as Horizontal Large Eddy
Simulation (HLES) acknowledging the particular properties of shallow-water
flows. Recently, this HLES approach has been validated against observations of a
shallow-water mixing layer (Kernkamp & Uittenbogaard, 2001).
The essential question is whether the available general-purpose shallow-water
solver is suitable for HLES, particularly, its numerical dissipation and the
accuracy constraints for simulating 2D-turbulence in free-surface flows. This
paper deals with these fundamental questions by simulating laboratory
experiments of 2D turbulence freely-evolving in a square basin.

2. The shallow-water solver Delft3D-Flow
In depth-averaged mode, Delft3D-Flow solves the following depth-averaged
shallow-water equations (SWE) for mass conservation and for the depth-
averaged horizontal velocity:

S+ V.(hu)=Oand- +u.Vu+gV =vV 2u + T-h-cuu. (1)
dt _tfkk

In (1), u=(u,v) is the depth-averaged horizontal velocity vector, h=d+ •"the total
depth, d the still-water depth and ý the free-surface position, both referring to
some horizontal reference plane, cf the bed-friction coefficient, v the kinematic
viscosity and g the magnitude of gravitational acceleration. The bed friction term
is the depth average of the force by the Reynolds-shear stress of 3D turbulence
without wind. The force vector T is due to subgrid-scale stresses. Bed friction
and T are omitted in this paper but applied by Kernkamp & Uittenbogaard
(2001) for simulating a shallow-water mixing layer. The term gV represents
the horizontal gradient of pressure based on the hydrostatic-pressure assumption.
On a staggered (Arakawa-C) grid, the horizontal terms in (1) are formulated in
curvilinear orthogonal co-ordinates but in this paper we consider just Cartesian
(x,y)-(u,v) grids.
The SWE (1) are time integrated by ADI of which the first half time step, from
t=nAt to (n+½2)At, begins by solving the discretised v-momentum equation:

V+ -V + YUW{nn+VD"uwVl4V+ -- n
V~ 2.J 2d j+w n+1 n 2n .=nr

2At (2)

2v r•2D2 cntri 2d entrl l n 2 d cn 1 cntri IV n n {

where Da is a first-order difference operator with respect to a horizontal
Cartesian co-ordinate c:x,y. For the advection terms in (2), Da is 2nd order
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upwind but 2nd order central for pressure as well as stresses. Eq. (2) is implicit
for v"'V2, solved by red-black Jacobi while pressure and twice the Laplacian
vV 2v are integrated explicitly. Instead, the discretised u-momentum (3) reads:

2 n+ in +-2,p
U"n+p- -U n+-yp+- 2 dC

1
tj "d }

t n 1u -n+__ _ 
22 nDrl n tI h " 2 cntrl ' ±n+ 4,p+l -

_At DX 'DY + g 2 D 21=10

(3)

2n+,P+l n+.L,p+l

Using (3), the new iterate h+ u , with iteration level p, is expressed

into old-time level variables as well as into r 2 P+½1 and subsequently substituted

into the following discretised conservation equation:

+ + D•2ndcntr n, n+D2 2 D+p+1 1+ Dcnrl {h nvn1= 0, (4)

-'-At 
Y

2

with h centrally-averaged to (u,v) points yielding a tri-diagonal system in x-
direction that is solved by the Thomas algorithm and subsequently iterated on

(p) to convergence. Note that the ratio h+2 / h+2 in the last term of (3)
ensures mass-conservation at every p-iteration. In the subsequent half-time step,
the u-momentum equation is formulated and solved as (2) and then the inviscid
momentum (3) for v is coupled to (4) while (3) is formulated implicitly in v-
component and in y-direction.
For the full time step, the coupled advection-conservation schemes are second-
order in time with fourth-order dissipation in space and unconditionally stable
(Stelling, 1984). The viscous force is integrated explicitly, invoking a mild time
step limitation.

For DNS or LES applications, a disputable disadvantage is that the cyclic
combination of 2hnd-order upwind and 2nd-order central advection in (2-4) are
neither strictly momentum nor strictly energy conserving. On the other hand,
however, the tendency of creating velocity wiggles in inviscid simulations using
the energy-conserving scheme of Arakawa & Lamb (1981) appear to invoke
more dissipation in simulations when viscous stresses are included (H61m,
1995). Further, the semi-implicit coupling of the pressure g 'to the momentum
equations (2-3) as well as to the conservation equation (4) tends to conserve the
energy stored in the free-surface or compressible velocity modes induced by the
velocity-advection operator. Depending on the flow and on the advection
scheme, the latter may convert incompressible energy modes into compressible
energy modes that are subsequently removed/dissipated by pressure
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correction/projection schemes that are customary in fixed-volume
incompressible DNS/LES solvers.
This section is concluded by introducing the time-step limitations based on
accuracy, rather than stability, of advection and of the long-wave or barotropic
(BT) velocity modes on a square mesh with grid size Ax:

Ax t I BT AX __ AtA = 2Vif2 a g (5)

max---- ,' 2,52 ý/ Atr 1'BT ma (5)

The first criterion originates from the semi-implicit x-advection term in (3) and
it demands aA<4 (Stelling, 1984, p. 165). Benqu6 et al., (1982) proposed the

second criterion with C;BT< 4Vi for avoiding aliasing in wave propagation using
ADI and staggered grids e.g. over bed topography. For the temporal
representation of advected and deforming vortices we believe aYA<O(0. 3 ) would
be a proper space-time consistency criterion. For Froude numbers

U / grh > 0(0.15) , using the limitation OrBT <42 , the latter criterion

coincides, i.e. AtA-AtBT. However, smaller Froude numbers are typical for our
applications and then the accuracy of simulating BT modes limits the time step.

3. Some considerations of 2D turbulence with a free surface
For an overview of properties of 2D turbulence, such as the inverse energy
cascade related to vortex merging, we refer to e.g. (Lesieur, 1997). For an closed
basin with water volume V, this section considers briefly the possible coupling
of 2D turbulence (vortical) motions to free-surface (BT) motions. The
frictionless SWE (1) then yields the following conservation property (Arakawa
& Lamb, 1981):

d- h h{u-u u + Igh- gd}dxdy =0, (6)

where the first term represents the kinetic energy (KE) and the sum of second
and third term the potential energy (PE). For a closed basin with horizontal bed
(constant d), the third term cancels due to mass conservation. In addition, from
the frictionless SWE (1) also follows

__t__ 2 l h -D ;D t- u .V , (7)

I- t h Dt JDt dt
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with horizontal-strain rate tensor Dij based on u and vertical vorticity component

(o,. From the frictionless SVWE also follows the conservation of potential
vorticity (PV) o, / h:

S0. (8)

A priori (6-8) suggest that 2D turbulence in free-surface flows differs from 2D
turbulence in rigid fluid volumes. For example, the LHS of (7) represents the
long-wave propagation of a surface perturbation ý associated with PE in (6)
whereas (6) shows that PE is reversibly exchanged with KE. Further, the RHS of
(7) acts as source of surface perturbations ý of which the vertical vorticity obeys
(8). Note that (7) is similar to Lighthill's equation for sound generation by
turbulence. The RHS of (7) equals the Weiss-function, see e.g. (Basdevant &
Philipovitch, 1994), where the last term is due to the vertical strain rate in long
waves.
We conclude that a priori deviations may exist between the evolution of 2D
turbulence simulated with a rigid lid, such as by Clercx et al. (1999), or with the
SWE (1). Nevertheless, detailed analysis (Vossen, 2000) of our SWE
simulations as well as animations of vorticity combined with surface elevation
show that (7) can be approximated well by the rigid-lid counterpart with
pressure gý:

V2 (g •)= 2: - D.i- Di.(9

4 Numerical initialisation of 2D turbulence in a free-surface fluid
Clercx et al. (1999) solve the viscous 2D stream function and vorticity equations
using 2882 Chebyshev polynomial expansion and they initiate 2D turbulence by
random 642 Chebyshev modes that in general do not obey incompressibility. The
laboratory experiments of Tabeling et al. (1991) start with 2D chessboard
vortices. In both cases, our simulations initiated with a spatially constant ý show
that much PE is generated as freely-propagating waves, see LHS of (7). For a
proper comparison with experiments we must initiate the velocity-surface field
more carefully as follows. Define, at t=0, the master velocity field as _u0 either
based on 642 Chebyshev modes or chessboard vortices. Next, the associated
incompressible field u(x,0) is derived from:

ux,O) =uio + V~withV 22 =- V .Uo, (10)
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with VX the corrected velocity field such that V . u (x,O)= 0 holds on the
computational grid. For closed boundaries (10) yields less KE in u(x,O) than in
110. Likewise, Clercx et al. (1999) report a decrease in KE at their first time step
that yields V. u(x, At)= 0. With u(X,0) by (10), the initial surface elevation

;(x,O) is obtained from (9) as the quasi-steady approximation to (7). Following
this initialisation, our SWE simulations then evolve gradually in time and space
without notable wave-like motions.

5. Investigation and estimation of numerical dissipation
In view of (5), the appropriate time step was investigated by inviscid simulations
of (1) initialised by Clercx's random 642 Chebyshev modes and the procedure
given in section 4. Figure 1 presents the temporal evolution of volume-integrated
KE in a basin of width W=lm with 1 cm still-water depth and 1u'I=4 mmn/s using
1002 square grid. In all cases, aA<0. 24 holds but Figure 1 shows that only if

YaBT < 42 is satisfied then near conservation of KE is obtained. Therefore,

tYBT < 4,[2 is applied in all subsequent simulations.

For practical reasons we estimate a numerical viscosity Vnum, equivalent to the
kinematic viscosity, by

I =--- I-- withE =1 Pjhu+V2 xdyand =-Pfp ho2 dxdy, (11)
aunt 20 dt k 2

although the advection operators yield 4th order dissipation. Series of inviscid
runs with variations of grids Np*Np (Np= 50, 100, 200, 500), of basin size (1-
100m) and initial fields with random Chebyshev polynomials or chessboard
vortices (1, 4, 16 and 100) yield the following approximation:

lu'lAx WN = ,(2Vaunt, = 8 ;p Np- = , (12)

8 j-, AX

with Np proportional to the resolved band width. Despite the strong temporal
merging of vortices (see figure 5), Figure 2 presents an example of the marginal
temporal dependence of V num estimated through (11) and thus suggests its
validity as estimator for numerical dissipation.

6. Simulations of 2D turbulence in free-surface experiments
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The upper part of figure 5 presents particle tracks observed in a 1 *1 m2 reservoir
(Maassen, 2000). Although the top layer floats on a denser salt-water layer,
Maassen (2000) notes a significant interfacial friction reducing the effective
Reynolds number by a factor 5. The lower part of figure 5 presents the vorticity
contours simulated by the shallow-water solver but without interfacial friction.
The evolution of vorticity patterns is similated qualitatively well by our shallow-
water solver. Due to the uncertainty in modelling the interfacial friction, i.e. cf in
(1), we prefer the comparison with simulations by Clercx et al. (1999) who
applied a solver dedicated to this type of experiments.
For Reynolds number Re=2000, Clercx et al. (1999) simulated decaying viscous
2D turbulence with no-slip wall conditions but without bed or interfacial friction.
They define Re and the temporal scale T by

ReT=__ I ; IAy+ R (13)
V u' 17N (

with W the width of the square basin. For resolving viscous boundary layers
with a square grid the last expression in (13) should equal unity and this
expression determines that Np=200 is adequate for a 2D DNS with our shallow-
water solver. Figure 3 includes the simulations of Clercx et al. (1999) solved by
2882 Chebyshev modes and we applied their initial velocity field based on 642

Chebyshev polynomials but corrected to an incompressible flow through (10).
Figure 3 presents the relative decay of volume-integrated KE as well as volume-
integrated enstrophy, as defined by (11), against time scaled by T defined in
(13). Under these conditions, the overall numerical viscosity (12) of the shallow-
water solver is estimated to be about 0.2v. Nevertheless the decay simulated
with the shallow-water solver is comparable or even less than simulated by
Clercx et al. (1999).

7. Conclusions and discussion
We conclude that the general-purpose shallow-water solver Delft3D-Flow is
capable of simulating vortex merging and the decay of 2D turbulence in a
viscous fluid without notable numerical diffusion (figure 3). From a simulation
point-of-view, the most notable aspect of the free surface in 2D turbulence reads
as follows. Animations of vorticity and surface elevations show that most of the
free-surface elevations are induced by the Weiss function, RHS in (9). Despite
that the free-surface elevations carry marginal available potential energy,
compared to kinetic energy, their evolution must be carefully simulated else
kinetic energy is generated artificially (Figure 1). The latter demands for the

barotropic Courant number oB7 / 44-<i 1 (figure 1) and it is very restrictive

compared to other accuracy and stability conditions for the shallow-water solver
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Delft3D-Flow. The reason for the constraint on this typical wave-propagation
condition is not clear. We speculate that the Poisson equation (9) is essential and
needs to be solved accurately. In SWE, however, the solution of (9) is obtained
through (7) and, if OBT is too large, errors in the rapid propagation of surface
perturbations spoil the approximation to (9).
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Figure 1. Decay of kinetic energy 1002 grid, 1*1 *0.0 1 in 3, 10'=4 nmins, initial random field, for

UBTI /4v2= 9.4 (6); 4.8 (5) ; 3.9 (4); 1.9 (3) ; 0.94 (2); 0.47 (1).
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numerical viscosity of simulations with different Ax
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Figure 2. Numerical viscosity, estimated by (11), for 50x50 (1), 100x]00 (2), 200x200 (3) and
500x500 (4) grid cells ; 100* 100* 1 mn3 ; Iu'I=0.4 mis, initialized by 16 chessboard vortices.
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Figure 3. Relative decay of volume-integrated kinetic energy and enstrophy, see (11) of 2D
turbulence initiated by a random field at Re=2000 and T=125 s time scale. Comparison between
the shallow-water solver (Delft3D) using 2002 square grid at CFAO.Ol12 and y,~ 14,F2=0.47, see
(5), with simulations in (Clercx et aL., 1999).

Figure 4. From left to right t= 0 15 20 30 minutes. Evolution of 4*4 chessboard vortices on a 5002

grid of 100* 100*l1m I3 ; l10.4 m/s ; nviscid shallow-water simulation.
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