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DNS OF MULTIPLICITY AND STABILITY OF MIXED
CONVECTION IN ROTATING CURVED DUCTS

LIQIU WANG AND TIANLIANG YANG
Department of Mechanical Engineering
The University of Hong Kong, Hong Kong

Abstract. A numerical study is made on the fully-developed bifurcation
structure and stability of the mixed convection in rotating curved ducts
with the emphasis on the effect of buoyancy force. The rotation can be
positive or negative. The fluid can be heated or cooled. The study re-
veals the rich solution and flow structures and complicated stability fea-
tures. One symmetric and two symmetric/asymmetric solution branches
are found with seventy-five limit points and fourteen bifurcation points.
The flows on these branches can be symmetric, asymmetric, 2-cell and up
to 14-cell structures. Dynamic responses of the multiple solutions to finite
random disturbances are examined by the direct transient computation. It
is found that possible physically realizable fully-developed flows evolve, as
the variation of buoyancy force, from a stable steady multi-cell state at a
large buoyancy force of cooling to the co-existence of three stable steady
multi-cell states, a temporal periodic oscillation state, the co-existence of
periodic oscillation and chaotic oscillation, a chaotic temporal oscillation, a
subharmonic-bifurcation-driven asymmetric oscillating state, and a stable
steady 2-cell state at large buoyancy force of heating.

1. Introduction

We study the fully-developed bifurcation-driven multiplicity and dynamic
responses of multiple solutions to finite random disturbances numerically by
the finite-volume/Euler-Newton continuation and the direct transient com-
putation for the mixed convection in ducts of square cross-section with the
streamwise curvature, the spanwise rotation in either positive or negative
direction, and the wall heating/cooling [Fig. 1 with (R, Z,¢) as the ra-
dial, spanwise and streamwise directions, respectively]. A positive rotation
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gives rises to a Coriolis force in the cross plane (RZ-plane) directed along
positive R-direction and vice versa. Such flows and transport phenomena
find their application in sedimentation field-low fractionation, aerosol cen-
trifuges, rotating power machinery, rotating heat exchangers, centrifugal
material processing and material quality control, medical and chromato-
graphic devices, etc.

Early works on the rotating curved duct flows were constrained to two
simplified limiting cases with strong or weak rotations. Ludwieg (1951) de-
veloped a solution based on a momentum integral method for the isothermal
flow in a square duct with a strong spanwise rotation. Miyazaki (1971, 1973)
examined the mixed convection in a curved circular/rectangular duct with
spanwise rotation and wall heating by a finite difference method. Because
of the convergence difficulties with the iterative method used, Miyazaki’s
work was constrained to the case of weak curvature, rotation and heating
rate. As well, all the works employ a steady model for the fully developed
laminar flow with a positive rotation of the duct. Since the solution is only
for the asymptotic cases, the secondary flow revealed by these early works
consists of only one pair of counter-rotating vortices in the cross-plane. The
interaction of the secondary flow with the pressure-driven streamwise flow
shifts the location of the maximum streamwise velocity away from the cen-
ter of the duct and in the direction of the secondary velocity in the middle
of the duct.

More comprehensive studies have been made in recent years by Wang &
Cheng (1996a) and Daskopoulos & Lenhoff(1990) for a circular tube, Mats-
son & Alfredsson (1990, 1994) and Guo & Finlay (1991) for a high-aspect-
ratio rectangular duct, and Wang & Cheng (1995, 1996b, 1997, 2001), Wang
(1997a, b, 1999), Selmi et al.(1994) and Selmi & Nandakumar (1999) for
the square and rectangular ducts with a low-aspect-ratio. All the works are
for the steady fully developed flows. Wang & Cheng (1996a) developed an
analytical solution for rotating curved flow with effect of heating or cool-
ing which allows to analyze the solution structure. Detailed flow structures
and heat transfer characteristics were examined numerically by Wang &
Cheng (1996b) and Wang (1997a, b, 1999). The rotating curved flows were
visualized using smoke injection method by Wang & Cheng (1995, 1997,
2001). Daskopoulos & Lenhoff (1990) made the first bifurcation study nu-
merically under the small curvature and the symmetry condition imposed
along the tube horizontal central plane. Matsson & Alfredsson (1990) pre-
sented the first and comprehensive linear stability analysis. Matsson & Al-
fredsson (1994) reported an experimental study, by hot-wire measurements
and smoke visualization, of the effect of rotation on both primary and sec-
ondary instabilities. Using a linear stability theory and spectral method,
Guo & Finlay (1991) examined the stability of streamwise oriented vortices
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to 2D, spanwise-periodic disturbances (Eckhaus stability). Detailed bifurca-
tion structure and linear stability of solutions was determined numerically
by Selmi et al. (1994) and Selni & Nandakumar (1999) without imposing
the symmetric boundary conditions.

It is the relative motion between bodies that determines the perfor-
mances such as friction and heat transfer characteristics. The duct rotation
introduces both centrifugal and Coriolis forces in the momentum equa-
tion describing the relative motion of fluids with respect to the duct. For
isothermal flows of a constant property fluid, the Coriolis force tends to pro-
duce vorticity while the centrifugal force is purely hydrostatic, analogous to
the Earth’s gravitational field (Wang 2001). When a temperature-induced
variation of fluid density occurs for non-isothermal flows, both Coriolis and
centrifugal-type buoyancy forces could contribute to the generation of the
vorticity (Wang 2001). These two effects of rotation either enhance or coun-
teract each other in a nonlinear manner depending on the direction of duct
rotation, the direction of wall heat flux and the flow domain. As well, the
buoyancy force is proportional to the square of the rotation speed while the
Coriolis force increases proportionally with the rotation speed itself (Wang
1997b). Therefore, the effect of system rotation is more subtle and compli-
cated and yields new, richer features of flow and heat transfer in general,
the bifurcation and stability in particular, for non-isothermal flows. While
some of such new features are revealed by our recent analytical and nu-
merical works (Wang 1997a, b, 1999, Wang & Cheng 1996a, b), there is
no known study on the bifurcation and stability of mixed convection in
rotating curved ducts.

The present work is a relatively comprehensive study on the bifurca-
tion structure and stability of multiple solutions for the laminar mixed
convection in a rotating curved duct of square cross-section (Fig. 1). The
governing differential equations in primitive variables are solved for de-
tailed bifurcation structure by a finite-volume/Euler-Newton continuation
method with the help of the bifurcation test function, the branch switching
technique and the parameterization of arc-length or local variable. Tran-
sient calculation is made to examine in detail the response of every solution
family to finite random disturbances. The power spectra are constructed
by the Fourier transformation of temporal oscillation solutions to confirm
the chaotic flow. We restrict ourself to the hydrodynamically and thermally
fully-developed region and two-dimensional disturbances. So far, a detailed
3D numerical computation of flow bifurcation and stability is still too costly
to conduct. A 2D model is still useful for a fundamental understanding of
rotating curved duct flows. However, our assumption of fully developed flow
limits our analysis to the one preserving the streamwise symmetry. There
may be further bifurcation to flows that breaks this symmetry and that
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cannot be found in the present work.

2. Governing Parameters and Numerical Algorithm

Consideration is given to a hydrodynamically and thermally fully developed
laminar flow of viscous fluid in a square duct with the streamwise curva-
ture, the spanwise rotation, and the wall heating or cooling at a constant
heat flux (Fig.1). The geometry is toroidal and hence finite pitch effect is
not considered. The rotation can be positive or negative at a constant an-
gular velocity. The duct is streamwisely and peripherally uniformly heated
or cooled with a uniform peripheral temperature. The properties of the
fluid, with the exception of density, are taken to be constant. The usual
Boussinesq approximation is used to deal with the density variation. The
gravitational force is negligible compared with the centrifugal and Coriolis
forces.

Consider a non-inertial toroidal coordinate system (R, Z,¢) fixed to
the duct rotating with a constant angular velocity about the O'Z’ axis,
as shown in Fig. 1. We may obtain the governing differential equations, in
the form of primitive variables, governing fully-developed mixed convection
based on conservation laws of mass, momentum and energy. The bound-
ary conditions are non-slip and impermeable, streamwise uniform wall heat
flux and peripherally uniform wall temperature at any streamwise position.
The proper scaling quantities for non-dimensionalization are chosen based
on our previous experience (Wang & Cheng 1996b). The formulation of
the problem is on full flow domain without imposing symmetric boundary
conditions to perform a thorough numerical simulation. The readers are
referred to Wang & Cheng (1996b) for the details of mathematical formu-
lation of the problem.

The dimensionless governing equations contain five dimensionless gov-
erning parameters: one geometrical parameter o (the curvature ratio de-
fined by a/R,. , the ratio of duct width/height a over the radius of the
curvature R, representing the degree of curvature), one thermophysical
parameter Pr (the Prandtl number, representing the ratio of momentum
diffusion rate to that of the thermal diffusion), and three dynamical pa-
rameters Dk, L1 and L2 defined in Wang & Cheng (1996b). The pseudo
Dean number Dk is the ratio of the square root of the product of inertial
and centrifugal forces to the viscous force and characterizes the effect of
inertial and centrifugal forces. L1 represents the ratio of the Coriolis force
over the centrifugal force, characterizing the relative strength of Coriolis
force over the centrifugal force. L2 is the ratio of the buoyancy force over
the centrifugal force and represents the relative strength of the buoyancy
force. A positive (negative) value of L1 is for the positive (negative) rota-
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tion. A positive (negative) value of L2 indicates the wall heating (cooling).
In the present work, we set ¢ = 0.2 (typically used in cooling systems of
rotor drums and conductors of electrical generators) and Pr = 0.7 (a typi-
cal value for air) to study the effects of three dynamical parameters on the
multiplicity and stability. While results regarding the effects of Dk and L1
are also available, we focus on the effects of L2 at Dk = 300 and L1 = 28
in the present paper due to limited space.

The governing differential equations are discretized by the finite vol-
ume method to obtain discretization equations. The discretization equa-
tions are solved for parameter-dependence of velocity, pressure and tem-
perature fields by the Euler-Newton continuation method with the solution
branches parameterized by L2, the arc-length or the local variable. The
starting points of our continuation algorithms are the three solutions at
Dk = 300, L1 = 28 and L2 = 0 from our study of the effects of Dy and
L1. The bifurcation points are detected by the test function developed by
Seydel (1994). The branch switching is made by a scheme approximating
the difference between branches proposed by Seydel (1994). The dynamic
responses of multiple solutions to the 2D finite random disturbances are
examined by the direct transient computation. The readers are referred
to Wang & Yang (2001) and Yang & Wang (2000) for the numerical de-
tails and the check of grid-dependence and accuracy. The computations are
carried out on the Super Computer SP2 of The University of Hong Kong.

3. Results and Discussion

3.1. SOLUTION STRUCTURE

The bifurcation structure is shown in Fig.2 for L2 values from —20 up
to 70 at ¢ = 0.02, Pr = 0.7, Dk = 300 and L1 = 28. In Fig.2, the
radial velocity component u at r = 0.9 and z = 0.14 (where the flow
is sensitively dependent on L2; r = R/a and z = Z/a) is used as the
state variable, enabling the most clear visualization of all solution branches.
Three solution branches, labeled by AS1, AS2 and S3 respectively, are
found. Here, S stands for symmetric solutions with respect to the horizontal
central plane z = 0, and AS indicates that the branch has both symmetric
and asymmetric solutions.

Branch AS1 has sixty-nine limit points labeled by AS1' to AS1%%
eleven bifurcation points connecting its sub-branches denoted by AS 1451-1
to AS1451-11 two bifurcation points connecting itself to AS2 labeled by
AS8145271 and AS145%271, and one bifurcation point connecting itself to $3
denoted by AS1°%. Branch AS2 has four limit points labeled by AS2! to
AS2*. Branch S3 is a symmetric solution branch and has two limit points
53! and S32. The location of fourteen bifurcation points and seventy-five
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limit points is available in Yang (2001). To visualize the details of branch
connectivity and some limit/bifurcation points, the locally enlarged state
diagrams are also shown in Fig. 2. As Fig. 2 is only 1D projection of 12400
dimensional solution branches, all intersecting points except fourteen bifur-
cation points should not be interpreted as connection points of branches.

For a large | L2 | value (L2 < —14.5 or L2 > 63.1), the buoyancy
force dominant the mixed convection. There is unique flow and tempera-
ture field for a specified value of L2 in these two ranges. Figure 3 illustrates
the secondary flow patterns, the streamwise velocity profiles and temper-
ature profiles at L2 = —17 and L2 = 65, respectively. In the figure, the
stream function, streamwise velocity and temperature are normalized by
their corresponding maximum absolute values | ¥ |maz; Wmaz and tmaz. A
vortex with a positive (negative) value of the secondary flow stream func-
tion indicates a counter-clockwise (clockwise) circulation. The readers are
referred to Wang & Cheng (1996b) for a detailed discussion of the flow
structures shown in Fig.3 in general, their relations with physical mecha-
nisms and driving forces and their effects on the flow resistance and heat
transfer in particular.

For a L2 value in —14.5 < L2 < 63.1, however, we can have multiple
solutions. Figure 4 shows typical secondary flow patterns of six solutions
(thirty-nine solutions in total) at L2 = —11.7. It is observed that the nonlin-
ear competition of driven forces leads to not only a rich solution structure
but also complicated flow structures. Therefore, the mixed convection in
rotating curved ducts is much more complicated than that available in the
literature.

3.2. STABILITY OF MULTIPLE SOLUTIONS

Recognizing that there is no study on dynamic responses of multiple solu-
tions to finite random disturbances in the literature, a relatively compre-
hensive transient computation is made to examine the dynamic behavior
and stability of typical steady solutions with respect to four sets of finite
random disturbances with d = 4%, 10%, 15% and 40% respectively. Here, d
is the maximum percentage of disturbing value over the steady value (Wang
& Yang 2001).

Seven sub-ranges are identified with each having distinct dynamic re-
sponses to the finite random disturbances. The first ranges from L2 = —20
to L2 = —14.5, where the finite random disturbances lead all steady solu-
tions at any fixed L2 to a steady symmetric multi-cell state on AS1, with
the same L2. The second covers the range —14.5 < Dk < —13.6 where
there is co-existence of three stable steady symmetric multi-cell states. In
the third sub-range —13.6 < L2 < 12.1, all steady solutions evolve to
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a temporal periodic solution. The fourth sub-range is from L2 = —12.1
to L2 = —11.5 where the solutions response to the finite random dis-
turbances in the form of either periodic oscillation or chaotic oscillation.
There is the co-existence of periodic and chaotic oscillations. In the fifth
sub-range —11.5 < L2 < —10.5, all steady solutions evolve to a tempo-
ral chaotic solution. The next sub-range —10.5 < L2 < —10.2 serves as
a transition between the chaotic oscillation and the stable steady 2-cell
flow. The solutions response to the finite random disturbances in the form
of subharmonic-bifurcation-driven asymmetric oscillation. In the last sub-
range L2 > —10.2, the finite random disturbances lead all steady solutions
at any fixed L2 to a stable steady symmetric 2-cell state on AS1,; with the
same L2. A detailed discussion of stability features can be found in Yang
(2001).

4. Concluding Remarks

The governing differential equations from the conservation laws are dis-
cretized by the finite volume method to obtain discretization equations,
a set of nonlinear algebraic equations. The discretization equations are
solved for parameter-dependence of flow and temperature fields by the
Euler-Newton continuation with the solution branches parameterized by
L2, the arclength or the local variable. The bifurcation points are detected
by the test function. The branch switching is made by a scheme approxi-
mating the difference between branches proposed. One symmetric and two
symmetric/asymmetric solution branches are found with fourteen bifurca-
tion and seventy-five limit points. Both solution and flow structures are
much more richer than those available in the literature.

The dynamic responses of multiple solutions to the 2D finite random
disturbances are examined by the direct transient computation. The finite
random disturbances are found to lead the steady solutions to a stable
steady multi-cell state in —20 < Dk < —14.5, the co-existence of three
stable steady multi-cell states in —14.5 < L2 < —13.6, a temporal periodic
oscillation in —13.6 < Dk < —12.1, the co-existence of periodic and chaotic
oscillating states in —12.1 < L2 < —11.5, a chaotic oscillation in —11.5 <
L2 < -10.5, a subharmonic-bifurcation-driven asymmetric oscillation in
—10.5 < L2 < —10.2, and a stable steady 2-cell state in —10.2 < L2 < 70.
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Figure 1. Physical problem and coordinate system
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(a) —20< L2< 70

(b) -15< L2< —8
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Figure 2. Solution branches and limit/bifurcation points (¢ = 0.02, Pr=0.7, Dk = 300

and L1 = 28)
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Figure 3. Flow and temperature fields (¢ = 0.02, Pr=0.7, Dk = 300 and L1 = 28; left:
secondary flow, middle: streamwise velocity, right: temperature)

Figure 4. Typical secondary flow patterns of six solutions among thirty-nine solutions
at L2 = —11.7 (0 = 0.02, Pr=0.7, Dk = 300 and L1 = 28)




