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AND
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A virtual-surface DNS is used to examine hairpin formation caused by
a pair of suction holes below a laminar wall-bounded flow. The work mod-
els an experiment, presently underway, in which quasi-periodic hairpins are
to be generated in a laminar plane-Poiseuille flow. We present some brief
preliminary studies of vortex dynamics and find both symmetric and an-
tisymmetric modes of shedding. We also examine the effect of inter-hole
spacing on hairpin formation.

1. Introduction

A turbulent boundary layer is known to consist mainly of two different kinds
of coherent vortical structures: counter-rotating streamwise vortices ob-
served in the near wall region and hairpin-shaped vortices extended across
the boundary layer. The hairpin structure consists of a head reaching out
into the log layer and long legs trailing behind and below in the buffer layer.
There may be many variants on this model since a simple, isolated, sym-
metric hairpin can be hard to find in experimental or computational fully
turbulent boundary layers. Assymetric or one-legged structures are com-
mon and a visualization of a high Reynolds number simulation can often
look like a confused mass of writhing worms. The hairpin structures extend
from a near-wall region of high shear having more stream-aligned structures
out into a much lower mean shear region. How each region influences the
other remains open to discussion. There has also been much effort exerted
in trying to fathom out how such coherent structures self-replicate. In a
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turbulent boundary layer the hairpins may form as an instability along the
low speed streaks. It is likely, however, is that there are several processes
which occur with different frequencies and that if one looks closely, one
process blends smoothly into another and becomes only distinguishable by
degree.

Levinski and Cohen [6] (LC) proposed a new predictive theoretical
model explaining the mechanism leading to the rapid growth of hairpin
vortices in shear flows. Malkiel et al [7] provided further proof of this the-
ory. LC focused on the evolution of localized disturbances (all dimensions of
which are much smaller than the length scale corresponding to variations of
the basic velocity shear) and used the fluid impulse integral to characterize
this type of disturbance.

Their analysis showed that unidirectional planar shear flows are always
unstable with respect to finite-amplitude localized disturbances. Further-
more, the analysis predicts that the initial vortex grows exponentially and
that it is inclined at 45° to the basic flow direction. These predictions agree
with existing experimental observations concerning the growth of hairpin
vortices in laminar and turbulent boundary layers.

The resulting set of coupled equations obtained by Levinski and Cohen
[6] describes the dynamics of the localized vorticity disturbance. Accord-
ingly it is governed by two mechanisms: one is the lift-up of the disturbance
in the cross-stream direction which stretches the basic spanwise vorticity
field and thus generates a disturbance-vorticity component in the cross-
stream direction; the other mechanism is associated with the stretching
and rotation of this disturbed vortex by the basic shear field. This intensi-
fies the streamwise vorticity component which, in turn, induces an increased
cross-stream velocity, thereby enhancing the lift-up effect and closing the
feedback loop. Once formed, the hairpin evolves through self-induction in
the presence of the mean shear.

Computational modeling of the Couette flow hairpin device was done
by Rosenfeld et al [9] who suggested hairpin formation due to a shedding
of a vortical bridge between the holes. In an ongoing experiment, hairpins
are to be generated in a laminar plane-Poiseuille flow by way of suction
through a pair of small holes on one wall. Computations of the effect of
similar distributed discrete suction holes by Meitz [8] examined how suc-
tion alters the stability of quiet flow, Klebanoff modes, and TS waves in a
Blasius boundary layer. Meitz’s work utilized a prescribed suction profile
over the holes with forced spanwise symmetry and emphasized the effects
of relatively lower suction levels than examined presently.

We here briefly examine the process through which such quasi-periodic
hairpins can develop. There can be different modes of hairpin shedding
with hairpins sometimes forming right between the suction holes, if the
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flow has slight asymetries, and at other times the hairpins roll up much
further downstream. The suction holes obviously alter the mean (parabolic)
flow field so whether the hairpins we examine correspond to those in an
unperturbed flat plate boundary layer remains to be determined.

2. The Computational Approach

The present work uses an unconventional computational approach — solid
surfaces are modeled by applying a body force to the flow to bring the flow
to rest on a virtual surface. This approach for creating a virtual solid surface
has been shown [1] to be sufficiently flexible and efficient to model laminar
and turbulent flow over complicated geometries. That work also discusses
the numerical stability of the method. Goldstein et al [2] provides a more
detailed review of the virtual surface approach as well as grid resolution
studies of laminar flow over riblets, an examination of the sensitivity of
the solution to various smoothing parameters, and an in depth analysis of
turbulent flow over virtual flat and textured plates. Goldstein and Tuan [3]
produce exhaustive grid resolution studies showing convergence even in a
turbulent flow over a ribbed surface using the same code as used herein.

The basis of the virtual surface model is that the surface being modeled
is defined by a set of boundary points which exist within a region spanned
by a fixed (Eulerian) mesh on which the flow equations are solved. The
boundary points xs exert a body force on the fluid such that the flow
comes to a desired velocity, Uges, on xs. A key feature of the present
approach is that flows around complex boundary geometries are reduced to
ones which are fully rectilinear and hence are amenable to spectral methods
(we use that of [5] and [4]). The virtual surface approach imposes only a
small computational overhead and little in the way of a coding burden.
Potential difficulties associated with the singular nature of the force field,
addressed in Goldstein et al [1,2], are largely overcome by spatial smoothing
and spectral filtering. The forcing function f(x, ) is determined as f(x,t) =
a fi AU(x,t")dt + BAU(x,t) with AU = U — Uges where the quantities
« and [ are negative constants (see [1]). On an immobile surface Uges = 0.
The lower surface is a virtual solid surface created with the force field
(Fig. 1(a)). The flow is sucked into the holes in the surface due to the
reduced pressure in the gap between the virtual surface and the ordinary
flow field boundary. This low pressure is maintained by forced blowing
(Udes = (0, vpi0w,0)) out of a spanwise strip in the virtual surface well
downstream of the suction holes.

A buffer zone, located immediately downstream of the blowing slot, is
used to both maintain the parabolic velocity profile in the bulk of the do-
main and to absorb the perturbations introduced by the suction and blow-
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Figure 1. (a) Channel flow configuration for two-hole suction simulations. Channel is
periodic in the streamwise (X) and spanwise directions (Z) and bounded by imperme-
able flat walls in the vertical direction (Y'). Flow quantities are represented by Fourier
expansions in the horizontal (X — Z) plane and a Chebyshev expansion in the wall nor-
mal direction. (b) Close-up of instantaneous isosurfaces of vorticity magnitude showing
hairpins shedding in the wake of two holes. Flow from lower left.

ing sites. The buffer zone uses the force field to bring the flow to the desired
parabolic profile. In order that this accomodation process be gradual, the
quantities @ and § are made to vary in the buffer region in a smooth man-
ner as Qpyffer(T) = 20e~120(A¢/W)* 44 Bouffer(z) = 20e~12(A2/W)? where
W is the number of cells in the the length of the buffer zone (=25) and Ai
the number of cells distant from the center z-plane of the buffer region. The
width of the apyffer Gaussian is much narrower than that of the By, fyer
Gaussian. apyffer is a rather harsh term in that it makes the force adjust
itself to completely cancel out the velocity error. This is of use in ensuring
the steady mean flow. The By fser term surrounding the gy fer core region
damps nearly all of the temporal fluctuations before they reach the opyffer
layer. The present channel dimensions are chosen to be 12.9h:2h:6.46h in
z:y:z where h is the channel half-height and the grid is 128 x 65 x 128.

3. Hairpin Formation

Figure 1(b) illustrates the nature of the hairpin vorticies we obtain in our
simulations. The channel Reynolds number based on centerline velocity,
U, and h(= .9289), is 1115. The hole center-to-center spacing, d, is 0.84h
and the holes are 7.32h upstream of the buffer layer. We give the volume
flow rate through the holes, Qs by comparison to the volume which
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would flow through the channel cross-sectional area bound by the top and
bottom surfaces and the hole centerlines in the absence of suction: dhUpeqn -
That ratio is dhUpean/Qhotes = 5.86. One incipient hairpin is forming just
downstream of the holes and three others are seen further downstream in
various stages of evolution. At this low Reynolds number the hairpins of
figure 1(b) appear short and stocky. At higher Reynolds numbers the legs
become longer and thinner and may develop a kink which evolves, through
leg-to-leg reconnection, into two separate hairpins.

The holes continuously pull high speed fluid from well above the surface,
down towards the surface. As a result, there is a continuous downflow of
fluid both over the holes and in their wake. Figure 2(a), shows a close-up
view of iso-vorticity contours in a ZY plane 2d downstream of the hole
centerline. There is clearly a region of downwash just above each high (w;)
vorticity streak in the wake of each hole. The head of a hairpin is just
passing through the frame at this time.

Figure 2. (a) Vorticity magnitude in a ZY plane showing slice of a hairpin head in the
wake of two holes and (b) streamwise instantaneous velocity contours in a ZX plane near
the suction holes {black ovals). Velocity vectors are also shown.

Figure 2(b) provides contours of the streamwise velocity U just above
the virtual surface near the suction holes. It is clear that the holes draw
in fluid nearly radially from the front and sides of the holes. The drawing
down of high speed fluid from well above the surface creates a region of fluid
just over the hole as well as just aft having a high U velocity. Moreover, the
suction is strong enough to create a separated reverse flow region outboard
of each hole.

We can interpret the flow in terms of the vorticity dynamics schemat-
ically shown in figure 3. The hairpins originate upstream of the holes. As
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the near-wall spanwise vortex lines in the mean parabolic flow move down-
stream ahead of the holes, they are pulled into a downstream orientation
by the suction thus rotating —w, vorticity into the z direction to create
Fw, vorticity. The vortex lines are strongly stretched, increasing in vor-
ticity, as they are drawn down the holes. These stretched and rotated

\Q Region of Downwash

his loop, extending up above
the surface, is rotating forward
due to mean shear.

Self-Induc ) : " Strong Stretching

Figure 8. Close-up schematic of vortex line dynamics near suction holes. Note that this
is meant to be a 3D perspective view and some of the lines project above the plane of
the paper.

vortex lines produce a region of upwash along the centerline, upstream of
the holes, that is surrounded by a pair of counter-rotating vorticies of the
same orientation as the hairpin legs downstream. Outboard of the holes
the downward-dipping highly stretched spanwise vortex lines can produce
the regions of reverse flow near the surface. The broken vortex lines drawn
down a hole (e.g., line A) lead to a region of downwash behind the hole.
That high-speed flow brought down toward the surface subsequently cre-
ates a persistent high w, vorticity streak in the wake of each hole. There is
also a circumferential nest-like ring of high vorticity around each hole (not
seen in these figures) caused by the high-speed flow drawn in over the hole
rim.

So the looped vortex lines originate in the immediate vicinity of the
holes, in a region of large pressure gradients and strong vortex line stretch-
ing. The upwash caused by these bent vortex lines between the holes brings
low speed fluid away from the surface producing the central low speed
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streak. How these vortex lines manage to roll into a thickened discrete hair-
pin appears to depend on flow symmetry. If the flow is symmetric across the
central Z-normal plane between the holes, the central low speed streak and
surrounding pair of streamwise vorticies may extend a long distance down-
stream before the streak becomes unstable and sheds hairpins. Sometimes,
however, we find that the low speed streak encounters a spanwise instability
directly between the holes. When this occurs (fig. 4), the hairpins roll up
and shed just aft of the holes. The shedding can switch between symmet-
ric and asymmetric modes in an apparently random manner for some flow
conditions but be locked into one mode for others.

Figure 4. Instantaneous streamwise velocity contours and velocity vectors in a ZX plane
near the suction holes. Note that the low speed streak between the holes is not symmetric
but undergoes a flapping motion associated with hairpin roll-up immediately downstream
of holes. In this case d = .98h, Re = 3717, and dhUmean /Qhotes = 6.80

We ran a parametric study of the effect of hole spacing, d, on the na-
ture of hairpin shedding by simply varying d while all other variables were
kept constant (Reynolds number = 3717). Meitz [8], referencing Goldsmith

. . . 2
(1957), utilizes a non-dimensional parameter for shear, T' = ‘217 3—; lwatt (%5

where g—; lwau is the velocity gradient at the wall and D is the hole diameter,
and a non-dimensional suction flux, F' = %%(%2)0'62 where Q'-b&& is

the suction flow volume per unit spanwise length. Both Meitz and Gold-
smith examined circular uniformly spaced holes while our holes have an

d—D)l.

—
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aspect ratio of 2.7 and are nearly isolated pairs. Nonetheless, whether we
choose D to be the hole width, hole length, or the geometric mean, our
values of T are O(10' — 103), within the range suggested by Meitz and
Goldsmith to produce hairpin shedding if F' >~ 37. Yet we find shedding
for lower values of F regardless of what D we choose or whether we take
Az = d or equal to the domain width. Only for the smallest value of d
(d/h = 0.44) do we find that the flow becomes steady. As we increase d, we
first find low frequency shedding with the hairpins forming symmetrically,
well downstream of the holes. For d ~ 1, asymetric near-hole shedding also

occurs.
Acknowledgment

The computations were performed at the University of Texas Center for
High Performance Computing and were supported by AFOSR under grant
F49620-98-1-0027 monitored by Dr. Thomas Beutner and through a Lady
Davis Fellowship at the Technion.

References

1. D. Goldstein, R. Handler, and L. Sirovich, 1993a, “Modeling a no-slip flow boundary
with an external force field,” J. Comp. Phys. 105, 354-366.

2. D. Goldstein, R. Handler, and L. Sirovich, 1995, “Direct numerical simulation of
turbulent flow over a modelled riblet covered surface,” J. Fluid Mech.,302, 333-376.

3. D. Goldstein and Tuan, T.-C., 1998, “Secondary flow induced by riblets,” J. Fluid
Mech.,363, 115-151.

4. R. A. Handler, E. W. Hendricks, and R. 1. Leighton, 1989, Low Reynolds Number
Calculation of Turbulent Channel Flow: A General Discussion. NRL Memorandum
Report 6410, p. 1-103.

5. J. Kim, P. Moin, and R. Moser, 1987, “Turbulence statistics in fully developed
channel flow at low Reynolds number,” J. Fluid Mech., 177, 133.

6. V. Levinski and J. Cohen, 1995. “The evolution of a localized vortex disturbance
in external shear flows. Part 1. Theoretical considerations and preliminary experi-
mental results,” J. Fluid Mech., 289, pp. 159-177.

7. E. Malkiel, V. Levinski and J. Cohen, 1999. “The evolution of a localized vortex
disturbance in external shear flows. Part 2. Comparison with experiments in rotating
shear flows,” J. Fluid Mech., 8379, pp. 351-380.

8. H. L. Meitz, 1996, Numerical investigation of suction in a transitional flat-plate
boundary layer, PhD Dissertation, Univ. of Arizona.

9. M. Rosenfeld, J. Cohen and V. Levinski, 1999, “The evolution of hairpin vorticies in
rotating shear flows. Numerical Simulations,” Proceedings of the 39th Israel Annual
Conference on Aerospace Sciences, Israel, Feb. 17-18, pages: 11-19.



