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Abstract

Direct numerical simulations of compressible fluid flow are performed for

subsonic and supersonic channel flow with two symmetrically backward fac-
ing steps and for a supersonic compression ramp flow field. Spatial deriva-

tives are represented by a central scheme of high order difference operators
(N=2,4,6,8,...) that is used together with artificial dissipation of order N.
A two-step Richtmyer scheme is employed for time integration. In regions

with steep gradients flux-corrected transport (FCT) according to Boris and
Book is applied. Preliminary results are presented for Mach number 1.5 in
case of the channel flow and further results for Mach number 2.84 in case
of the ramp with a ramp angle of 24 degrees.

1. Introduction

The Reynolds Averaged Navier-Stokes equations (RANS) are often used in

connection with various turbulence models to model technical problems of
compressible fluid flow, e.g. [1]. But the aptitude of a particular turbulence

model for the problem to solve is generally not known beforehand and may
even be unsatisfactory. On the other hand, the rapidly growing computer

resources offer a promising future to physically more realistic mathematical

models like Large-Eddy Simulation (LES) and Direct Numerical Simulation
(DNS), see for example [2][3]. Both methods require high order discretiza-
tion with special treatment of shocks or steep gradients. While LES still

needs some modeling to account for the spatially underresolved stresses,

DNS should be apt to resolve all turbulent scales without the support of
any empirical turbulence modeling. While the method in [3] employs al-
ternating upwinding using compact differences, the method applied in this
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paper is based on central high order numerical operators for interpola-
tion and approximation in space in conjunction with a two-step Richtmyer
scheme. The method represents an extension of the concept proposed in
[4] for the Burgers' equation and the Euler equations to the system of
the Navier-Stokes equations for heat conducting compressible fluid flow [5].
Flux-Corrected Transport (FCT) according to Boris and Book has been
implemented to account for steep gradients, e.g. in the presence of shocks.

2. Numerical Method

2.1. INTERIOR POINTS OF THE SOLUTION DOMAIN

Denoting by U the set of conserved variables p, pu, pv, pw, petotat and by
FC the fluxes corresponding to the inviscid and by Fd the dissipative part of
the fluxes and leaving out body forces and body energy supply the system
of Navier-Stokes equations reads

3 3

Ut + E Fc= F(1)
r=1 r=1

The equations are integrated with respect to time employing a second or-
der Richtmyer scheme. Space discretization is performed with central high
order numerical operators [4][5]. The numerical scheme requires artificial
dissipation of the highest order of the scheme for numerical stability in the
sense of von Neumann [5]. Using lower index ir for discretization in the
space directions r, r = 1, 2, 3 and upper index n for time stepping the set
of discretized equations reads

z,+1/2 LrU +i/ 2 - 0"51rAri/ 2RrUi +1/2

3
{(Fcn+ 1 /2  Fcn+l/ 2

un~ + 1 en - r f "r rir+ 1/2 ri,- 1/2'
r=1

+ (Fd+ - , - (SrU +1/2 - SrU4 1 2 )1

ir {i,j,k} , At/Axr Ar , r = 1, 2,3 (2)

Therein Lr, Rr, Sr represent the aforementioned high order operators, Lr
serving for interpolation, Rr for approximation and Sr for artificial dissi-
pation. Ar is the Jacobian. With coefficients am in Lr, bm in R,, and dm
in S, the operators of order N are defined as follows,

N/2

LrUi,+ii2 = E (-1)m+lam(Ui,+m + Uir-m+i), (3)
m=i
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N/2

RUi,+l/2 = Z (-1)m+lbm(Uir+m - Ui-m+i), (4)
m=1

N/2

SrUir+1/2 = Oir+1/2 1: (-1)m+ldm(Uir+m + Uir-n+l), (5)
m= 1

with air+1/2 a prescribed factor for each cell index. The expression for the

artificial dissipation of order N is

ON U N
-aO N AX r = -(SrUir+l/ 2 - SUirl/ 2 )AXr 1 , (6)Ox r

with a a number to be chosen. Optionally, in domains with steep gradients

FCT is applied in a self-controlled fashion with the following expressions

for the anti-diffusive flux (index ad) and the corrected flux (index cor)

F c(ad) = FC(h)n+1/2 -Fc(1)r+1/2 Fc(cor)n+1/2 - FC(ad)
Tir+1/2 ri,+1/2 

r i
r+1/2 ' ri,,+1/2 - Cir/ 2 rir+1/2 (7)

The coefficients am, bmn and d,, in Eq. (3), (4), and (5) are depending on

the order N which is chosen for the solution [4][5].

2.2. BOUNDARY POINTS

At solid walls the no slip condition is prescribed and walls are assumed
thermally adiabatical. The central scheme of order N makes use of N/2
fictitious points by mirror principle. For solution points at artificial bound-

aries marking the boundary of the computational domain, e.g. at inflow and

outflow, also N/2 fictitious points are needed. Different conditions are to be

distinguished in the fictitious points there for subsonic and supersonic flow.

For subsonic inflow and outflow part of the values in the fictitious points

are set using Riemann invariants according to a concept of local simple

waves in the sense of gasdynamics while the other part of the values are

extrapolated. This way non-physical reflections from the artificial boundary
are mostly suppressed.

2.3. APPLICATION PROCEDURE AND VALIDATION

The examples we discuss in this paper would represent two-dimensional
flow fields in case of laminar flow. The calculation starts as for laminar

flow. On the inflow boundary at a wall a starting boundary layer with

parabolic velocity profile is prescribed which may become later on changed

as part of the solution because of locally subsonic inflow. At walls the

correct boundary conditions are introduced from the first iteration step.
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First, some thousands of time steps of the solution are performed for two-
dimensional flow. Then during a certain number of time steps a disturbance
consisting of two additional velocity components in the cross-plane of the
main flow direction is superposed to the boundary condition at the entrance
of the solution domain which makes the flow three-dimensional. Thereafter
this disturbance is removed.

Numerous and extended validation tests which are not presented in the pa-
per have been conducted for the method [5][11], e.g. comparison was made
with analytical solutions of the Burgers' equation, of the 1D Riemann prob-
lem for the Euler equations, and of the mean velocity distributions in the
viscous layer and the logarithmic layer from turbulent boundary layer the-
ory. Results for compressible flow at Mach number M=0.2 in a straight
channel at Reynolds number Re=1750 have been compared with DNS re-
sults [6] [7] and experimental results at comparable Reynolds numbers [8] [9].
Numerical results for a Mach 0.2 flow with Re=2600 through a channel with
a backward facing step were compared with experimentally determined val-
ues [10] including the Reynolds stresses at different positions behind the
step [5] [11]. A kind of self-validation is the check of asymptotic convergence
with increasing the order N first and then refining the grid. This has been
done e.g. in [11] for the flow through a channel with a straight axis and a
symmetric jump of the channel height from h on the upstream side to 3h on
the downstream side. Data for Mach and Reynolds numbers were M=0.6
and Re=10'. Asymptotic convergence was found for N=8.

3. Simulations of Supersonic Flow Fields

A Mach 1.5 flow through the aforementioned channel with two symmetrical
backwards facing steps has been simulated. Static pressure in the flow just
before and just behind the steps has the same value p=l. The Reynolds
number based on the step height h is Re=10. The length of the solution
domain from the steps to the outflow end is 16h. Number of grid cells in
this domain is 256x61x41. Flow is from left to right. Computation is started
with given supersonic inflow upstream of the steps including a boundary
layer of thickness 0.15h at the upper and lower wall with a parabolic veloc-
ity profile. In Fig.(1) results of the density distribution are shown for orders
from N=2 up to N=16 for the same physical time t=20 which means 20000
time steps. The flow field is not yet fully established. Comparing the contour
lines for the different orders one recognizes that contrary to the subsonic
M=0.6 case the order N=8 seems not sufficient for asymptotic convergence.
Before the order step from N=14 to 16 the solution exhibits decreasing but
still remarkable changes with increasing order. The long time simulation
was then conducted with order 16. In Fig.(2) some results obtained so far
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are presented. The instantaneous contour lines of Mach number, pressure
and density distributions for t=70 show on the inflow side the typical jet
behavior for the case of adapted pressure. Then the jet becomes declining
more and more, exhibiting vortical structures, local supersonic pockets at
vortices and shocklets. The ranges of Mach number are from M=0.1 to
M=2.8 and of pressure and density from p=0.3 to p=2.3 and p=0.4 to 1.7,
respectively. Pressure fluctuations for the time interval from t=40 to t=100
have been recorded in points PI: x1 = 3h, x 1 = 2h, X3 = 0 and P 2: X1 = 15h,
X2 = 2h, X3 = 0. The graphs and frequency spectra do not yet represent
fully developed turbulent flow. It seems that the computational domain is
not long enough to observe the full transition region. Further investiga-
tions are necessary. As a second example the supersonic flow over a 240
ramp is revisited [11] Mach number and Reynolds number are M=2.84 and
Re=10. According to experiments by Settles [12][13]. results are depicted
in Fig.(3). The length of the separation zone is reproduced fairly well by
the simulation, and the three-dimensional character of the flow is obvious.
The pressure signature in the middle of the corner line is within a range
of p=l.9 to p=3.3. The mean pressure is overpredicted in the separation
zone but fits fairly well the experimental values outside. The skin friction
coefficient fits best the earlier experimental values found by Settles [12]
That agrees with recent results [2].
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Figure 1. Supersonic flow (M=1.5, Re=104 ) through a channel with two backwards fac-
ing steps. Asymptotic convergence check of the instantaneous density field with increasing
order, t=20
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Figure 2. Supersonic channel flow (M=1.5, Re=10 4 ) instantaneous contours of Mach
number, pressure and density for time t=70 and signatures of pressure over time from
t=40 to t=100 in points PI: xi = 3h, x2 = 2h, X3 = 0 and P 2 : Xl = 15h, X2 = 2h,

X3 = 0. Lower figures: respective Fourier spectra
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Figure 3. Supersonic flow along a 240 compression ramp (M=2.84, Re=10), isosurfaces

of M=2.74, 2.5 and 2.05 and p=2.58 and 1.54 (upper figures), graph of pressure signature
in the middle point of the corner line for the time interval from t=30 to t=60 and the

respective Fourier spectrum (middle figures) and mean wall distributions of pressure p

and skin friction coefficient cf (lower figures). Symbols represent experimental values
[12][13]
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