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EQUATION

CHAOQUN LIUO AND JIAN XIA'
Department of Mathematics,
University of Texas at Arlington,
Arlington, TX 76019-0408, USA

Abstract
A new so-called truncation error reduction method (TERM) is developed in

this work. This is an iterative process which uses a coarse grid (2h) to estimate

the truncation error and then reduces the error on the original grid (h). The

purpose is to use multigrid and simple stencils for high-order accuracy.

1. Introduction
The driven force for this work is to develop a new method which can use

simple stencils with multigrid method for high order accuracy. The multigrid

(Brandt, 1984) was originally used to accelerate the convergence for elliptic

systems. The work here is to use multigrid for high-order accuracy with a simple

stencil which allows to achieve high-order accuracy with much fewer points than

the traditional finite schemes. The high-order scheme is particularly important

for direct numerical simulation (Orszag, S. A. & Patterson, G. S., 1972; Moine

and Mahesh, 1998) and the large eddy simulation (LES) (Lilly, 1966; Leseiur &

Metais, 1996).

Let us take a look at the problem with coarse grid DNS from the

mathematical point of view. Here, the coarse grid DNS means to use a grid which

is acceptable by currently available computers. The problem with the coarse grid

DNS is really caused by the truncation error while the mesh size 'h' and time

step 'k' are not small enough. There are resolution problems with coarse grid

DNS as well, of course. Before we can reduce the truncation error, we need to

give an estimation which is given by an iterative process including a coarse grid

discretization and a coarse-to-fine grid interpolation.

We use the Poisson equation as a test case to check the TERM method and
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will use this method for CFD late.

2. Truncation errors reduction methods for Poisson equation

Let us take a look at the following Poisson equation:

O2u &~u
+ - = k 2k2(sin(kD) +cos(kay)) (1)

u(O, y) = cos(kay); u(1, y) = cos(knry); (2)

u(x,O) = 1 + sin(knx); u(x,1) = (-1)k + sin(kbra)

The exact solution is sin(k=v) + cos(knry). We adopt a standard second

order central difference scheme with uniform grids, Ax = Ay = h, and obtain a

finite difference scheme:
Uh1 . 2Uh +u h u h -2u' +uh

+ ,ij +t h2 j = sj (3)h 2 h2 i

where u is the exact solution and sij = -k A22 sin(kui) - k 2 r 2 cos(kTi).

This finite difference scheme will give an exact solution if we can find the

exact truncation error, ij ,, which has a second order, O(h2 ). We all know it is

difficult to find the exact truncation error, but we can try to give a more accurate

estimate by an iterative process which can be described as follows.

1. Assume 9h,0 = 0, do one or two times Gauss-Seidel iterations, multigrid

IhI

(Brandt, 1984) may be much faster, to get an approximation u,.

2. Find the approximation on the coarse grid u2h,72 = Ihh 'uj1 . In our case, a

simple injection is used for I 2h (or U2h'l Ih

3. Estimate the truncation error on the coarse grid:
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S2h . '• 2h 2hi 2h ' 2 h . ,

_2h,l _i-l,j 1_'i_ j _+"• i,j- - i,j ij+l
'irj = si.j (2h)2 (2h)2 (4)

4. Estimate the truncation error on the fine grid:
rhi I X h II 2hJ (Zilj - 2h i2,j2

where I•', should have same or higher order than the finite difference

scheme and we should use 1/16 instead of 1/4 in the formula if we use a

fourth-order scheme.

5. Get a revised finite difference scheme on the fine grid:
U7h, -2uh +h uh - 2Uih, j+

l-[j ij"- Ui-lIi iujIl U~j i,j+l h

h .+ -hi = Si,j (6)

6. Go to step 1 and start a new loop until 11 ,.hn+l _,h,n 11 < tolerance

This method can be extended with some changes to other flow problems which

are usually non-linear and time-dependent.

3. Numerical test for Poisson equation with different grids
A number of numerical tests by using this truncation error reduction method

(TERM) for different grids (8x8, 16x16, 32x32, 64x64, 128x 128) and different k

(1, 2, 3, 4, 8, 16) have been conducted.
Table I compares the numerical results with the exact solution. The

comparison shows the error ratio of coarse grid 2h over fine grid h for standard

second order central difference scheme, u- u 21 u - u , is near 4, which

shows the numerical scheme has a second order accuracy (Burden & Faires,

1996). By using the TERM method , the accuracy has been significant increased.
First we find the error ratio is nearly 16, which shows we got a fourth order

accuracy with second order stencils. From Table 1, we can find a solution with a

grid of ]6x 16 by the new method can get same results as one obtained with a grid

of 64x64 by the standard central difference scheme. It shows we can save the
grids or the computer memory by 16 times for this 2-d Poisson equation. The
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computation time can be saved almost 100 times. Similar conclusion can be
found with other grids and different wave number k. More encouraging, the

method shows a same achievement when the wave number becomes higher. It

still can improve the results when we have only three points for one wave ( see

the cases of 8x8 for k=4 and 16X16 for k=8). It provides a high potential which
could be used for coarse grid DNS for a more accurate numerical simulation for

transitional turbulent flow.

Figure 1-4 show the L2 norm of errors between the numerical solution and

exact solution against the standard central difference method and the TERM
method for different grids. It clearly shows that the new method increases the

accuracy significantly and has potential for more accurate coarse grid simulation.

For 2-D, the new method saves at least 16 times in grid point numbers and much
more in CPU time. We can anticipate it will save at least 64 times in the number

of grid points for 3-D problems.

4. Conclusion
The new so-called truncation error reduction method (TERM) can

significant increase the accuracy of numerical solution for Poisson equation for
different wave numbers. It shows TERM can use coarse grids to achieve much
more accurate numerical solution than the standard finite difference scheme for
Poisson equations. It can save hundreds times in memory and computational time.

Potentially, the method may be used for fluid dynamics and for coarse grid DNS.
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Analytic Solution IMAX = 8 IMAX = 16 IMAX=32 IMAX=64 IMAX=128

u(x, y) = sinkirv + coskty JMAX = 8 JMAX = 16 JMAX=32 JMAX=64 JMAX=128
ERROR

k=l (central difference) 3.8297E-003 1.0188E-003 2.6273E-004 6.6712E-005 1.6809E-005

ERROR
(TERM) 7.8555E-004 6.1889E-005 4.3033E-006 2.8284E-007 1.8116E-008
ERROR

(central difference) 3.5781E-002 9.3823E-003 2.4108E-003 6.1159E-004 1.5406E-004

k=2 ERROR
(TERM) 9.9472E-003 8.4777E-004 6.0961 E-005 4.0573E-006 2.611 OE-007
ERROR -0 03-0

fferRR 93301E-002 2.3893E-002 6.1033E-003 1.5461E-003 3.8931E-004

k3 (central difference) 9.3301E___
ERROR
(TERM) 4.2942E-002 3.8647E-003 2.8834E-004 1.9441E-005 1.2565E-006
ERROR

(central differenceR 19922E-001 4.8970E-002 1.2387E-002 3.1303E-003 7.8776E-004

k4 ERROR(TERM) 1.3625E-001 1.1337E-002 8.7461E-004 5.9764E-005 3.8789E-006
ERROR -0 0k=8 (central differec) 1.3273 2.3419E-001 5.5260E-002 1.3733E-002 3.4418E-03

ERROR
(TERM) 6.7739 1.6488E-001 1.2195E-002 8.9128E-004 5.9201E-05
ERROR

(central differenc 91.4400 1.5034 2.5141E-001 5.8164E-002 1.4329E-02

k=16 ERROR
(TERM) 92.3567 31.4476 1.8054E-001 1.2681E-002 9.0120E-04

homogeneous isotropic turbulence, Phys. Rev. Lett. Vol 2, pp76-79, 1972.

Table 1. Error comparison between central difference scheme and TERM

with different grids and wave numbers
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Figure 1: Comparison of errors between Figure 2: Comparison of errors between

standard Central difference scheme and standard Central difference scheme and
TERM scheme, k1]. TERM scheme, k=2.
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Figure 3: Comparison of errors between Figure 4: Comparison of errors between
standard Central difference scheme and standard Central difference scheme and
TERM scheme, k=3. TERM scheme, k=4.

Appendix
We can prove the above TERM method for Poisson equation has fourth

order for interior points. For simplicity, we consider the one dimensional case:

a2

ax2 f 
(7)

Similarly to (3), the standard second order central difference scheme with

uniform grids, Ax = h, can be written as

UiI - 2ui + ui+1  (8)

h
2

*injecting points
fine grid: S , S , S 9 S

* interpolating points

coarse grid: S S S S

Figure 5 Injecting points and interpolating points

1. Injecting points where the fine grid point coincides with the coarse grid point

(U2h =U)
O i cas 2i gi

On coarse grid
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Ui- 2 -2ui +/ (i+2

(2h) 2  (9)

Here, -i is the truncation error on coarse grid. We have used the following

relation betweenr, andt

ii= i 2 -2 ui + ui+2
T. =-r±r + -i f. -2 + (04 4 4h2

Here, fi is the truncation error for the new scheme. Substitute (10) into (8), we

have

-ui- 2 + 16ui-1 -30ui +16ui+-U+2 -f

12h
2

Using Taylor series, we can find that Fi - 0(h 4 ) and (11) is a fourth order

scheme.

2. Interpolating points where the fine grid point is located between two coarse

grid points.

On coarse grid

ui_3 -2ui- + (1i+2

(2h) 2  i-- = f --1  
(12)

ui-1 - 2ui+l + Ui+3

(2h)2 + - 1-i+1 A +1 (13)

Here, f_- and F+l are the truncation errors on coarse grid. We have used the

following relation for _1 , f+> and Ti

i=--x- 1 +fi+1)+fi= fI-1+fi+ -ui-3 -ui-- Ui+1 + Ui+3 + i
4 2~ 8(~i 4h 4/ 2
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(14)

Here, ?i is the truncation error for the new scheme. Substitute (16) into (8), we

have

-ui-3 +33ui-, -64ui +33ui+,1 -ui+ 3 + (fi-1 -2fi +fjo) +1 ) i = fi (15)

24h 2  6

We have following relations on the fine grid:

Ui_2 -- 2Ui-, +- Ui h 2 ()(6

U, 2, + h( 4 )(•i-) -- f-I (17)h 2 12

Ui-2U,1i + Ui+2 h!2 (4) 2 (18)
hz 212

Ui -- 2Ui+l + Ui+2 .h 2 U()( + 1(8

h 2 12

Here xi_< 2 i-, < xi , Xi-I , 4i • Xi+l and xi • •i+1 - xi+2 Substitute (16),

(17), (18) into (15), we have
i--U_3 + 4Ui2 + 17Ui, -- 40ui +17ui+, + 4ui+2 -- Ui+3

24h2 (19)

7h2 (( 4 ) 2u (4 ) (ýi ) + ( =i+1 -

Because u (4 ) - 2u (4) (i ) + U (4) ( ui+) U (6) r)h 2  (20)

here xi-2 < 11i < Xi 12. Therefore

h2(U(4)(ji)- 2u (4) (4i ) + U (4)i+l)) - O(h 4 ) (21)
72

Using Taylor series, we can find that 'i - O(h 4 ) and (15) is a fourth order

scheme.


