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1. Introduction

This work is concerned with the development of an efficient parallel Large
Eddy Simulation (LES) and Detached Eddy Simulation (DES) capability
using unstructured meshes. The advantages of unstructured meshes include

flexible modeling of complex geometries, adaptive meshing capabilities, and
homogeneous data structures well suited for massively parallel computer ar-
chitectures. On the other hand, unstructured mesh techniques require ad-
ditional computer resources as compared to cartesian or structured mesh
methods, and the achievable accuracy of the particular unstructured mesh
discretization must be carefully considered. The approach developed in this
work is based on an existing steady-state unstructured mesh solver which
relies on agglomeration multigrid for rapid convergence and has been shown
to scale well on inexpensive personal computer (PC) clusters as well as

on massively parallel supercomputers using thousands of processors [1]. A
vertex-based discretization is used, where the flow variables are stored at
the vertices of the mesh, and a single edge-based data structure capable
of handling combinations of tetrahedra, hexahedra, prism and pyramids
is employed. Spatial discretization is achieved through a central-difference

control-volume formulation with scaled matrix-based artificial dissipation
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derived from an upwind Roe-Rieman solver. This discretization is second-
order accurate in space. The baseline steady-state solver is extended to
an unsteady Reynolds-Averaged Navier-Stokes (URANS) solver, using a
second-order accurate three-point backwaxds difference time discretization
[2]. At each physical time-step, the parallel agglomeration multigrid algo-
rithm is employed to drive the non-linear (unsteady) residual to conver-
gence. The agglomeration algorithm automatically constructs coarse levels
in a pre-processing phase, based on the graph of the original fine grid.

A preconditioned multi-stage iterative scheme is then used on each grid
level to drive the multigrid algorithm. Jacobi (point-wise) precondition-
ing is used in isotropic regions of the grid, while line preconditioning is
used in highly stretched regions of the grid such as near walls where high
grid stretching is required to resolve thin boundary layers [3]. The steady
and unsteady RANS solver employs the one equation turbulence model of
Spalart and Allmaras [4]. The extension from RANS to LES and DES is
achieved through the modification of the length scale definition d in the
Spalart-Allmaras turbulence model. In the original model, d is taken as the
distance at a given grid point to the closest wall. In the DES extension
proposed by Spalart [5], this length scale is replaced by:

dDES = min(d, CDES,/AX) (1)

where d represents the original closest-wall length scale, CDES represents
a model constant taken as 0.65, and Ax represents a measure of the local
grid spacing. For unstructured meshes, Ax is taken as the maximum edge
length touching a given vertex. In regions far removed from walls, this
modification to the turbulence model emulates a simple Smagorinsky model
for LES, while reverting in a smooth manner to the well-established Spalart-
Allmaras RANS model in near wall boundary-layer regions.

The resulting solution methodology is nominally second-order accurate
in space and in time. We avoid the construction of higher-order accurate
spatial operators in order to be able to retain all the discretization, solu-
tion, and parallelization techniques previously developed in the steady-state
solver context. However, extra care must be taken to avoid excessive nu-
merical diffusion from the second-order discretization from dominating the
turbulence eddy viscosity levels in LES regions. With this in mind, the
individual convective and numerical dissipative terms of the discretization
are evaluated separately, and a (constant) scaling factor is applied to the
dissipative terms which provides the option for reducing these terms from
their nominal values obtained when the scheme is written as an upwind
Roe-Rieman solver.

The agglomeration multigrid algorithm, which is used here as a non-
linear implicit solver in time, removes any stability restrictions on the per-
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missible time-step size, thus allowing the time-step choice to be determined

solely by accuracy considerations. While the desirable time-step size in LES
regions may be small enough to obviate the need for a fully implicit solver,

in the DES mode very high Courant numbers will almost always be en-

countered in boundary layer regions, where the solver reverts to a RANS

behavior, thus making the availability of an implicit solver essential.

In the following sections, the solver is validated first in unsteady RANS

mode for the flow over a circular cylinder. Validation in the LES regime

is then undertaken by computing the decay of isotropic turbulence in a

periodic box. Finally, the flow over a sphere is simulated in DES mode and
compared with experiment and with an equivalent simulation using the
solver in an unsteady RANS mode.

2. Unsteady RANS Flow Over a Circular Cylinder

The flow around a circular cylinder is a well- known case, which has been
widely studied computationally and experimentally. This case is used as
the basis for validation of the unsteady RANS solver, and for assessing grid

resolution and time-step requirements for accurately predicting the vortex

shedding frequency observed in the cylinder flow. Two different meshes of
252,000 and 631,000 grid points and three different time-steps of 0.5, 0.25

and 0.1 were used. The time-step is non-dimensionalized as t = toUinf/d
where d is diameter of the cylinder and Uinf is the freestream velocity.

The one equation Spalart-Allmnaras turbulence model [4] was used for all

calculations in fully turbulent mode. In all cases the agglomeration multi-
grid strategy was used with four levels. The Mach number is 0.2 and the

Reynolds number is 1200 for this case. All runs were performed in parallel

using 16 processors of an Intel 500 MHz Pentium III PC cluster.

The computational domain in the plane normal to the cylinder span has

an aspect ratio of 1 and a side length of 100 cylinder diameters. A span of
two cylinder diameters is employed, and inviscid (slip velocity) boundary
conditions are applied at the end-walls.

Table 1 shows the Strouhal Numbers computed for each mesh and each
time-step of the cylinder flow simulations. Convergence is achieved as the

time-step is reduced and the mesh size increased. A second-order accurate

convergence behavior is observed as the time-step is reduced, validating the

accuracy of the three-point backwards difference scheme used to discretize
the time-step. From the smallest time step results, the solution can be seen

to be grid converged, at least with respect to the prediction of the vortex

shedding frequency. The computed Strouhal number compares very well to

the experimental value of St = 0.21.
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3. LES Simulation of Isotropic Decaying Turbulence

In order to validate the solver in the LES mode, the simulation of decaying
homogeneous isotropic turbulence is computed and the energy spectra of
the flow field are compared with experimental results from Comte-Bellot
and Corrsin [6]. Strelets [7] has performed similar computations which were
used to calibrate the value of the CDES model constant. In the present work,
we are mainly concerned with assessing the impact of numerical dissipa-
tion on solution accuracy, since the scheme is only second-order accurate.
Therefore, the value of CDES is held constant at 0.65 for all computations,
which is the value recommended by Strelets [7]. Artificial dissipation levels
are varied by prescribing different values of the dissipation scaling param-
eter, and by varying the grid resolution. In addition, simulations with and
without the turbulence model eddy viscosity are performed to assess the ef-
fect of the turbulence model on overall solution accuracy, and to determine
whether the the levels of eddy viscosity dominate the artificial dissipation.

The computational domain consists of a cube with periodic boundary
conditions. Because no wall regions are present, the DES model operates in
the LES mode throughout the domain regardless of grid resolution. Compu-
tations axe performed on a coarse and a fine grid, which are constructed as
unstructured cartesian grids with 32 and 64 hexahedral cells, respectively,
in each dimension of the cubic domain.

In order to compare with the experimental values from [6], the flow
field in the computational domain must be initialized as a solenoidal field
with a prescribed energy spectrum corresponding to that measured at the
initial test section in the experiments (up to the cutoff value of the wave
number corresponding to the grid size). The initial eddy viscosity field
must then be obtained by preconverging the turbulence model with the
flow-field held frozen. Once the initialization is complete, the flow field
is advanced in time using the implicit time-stepping procedure described
above. A time-step of 0.01 is employed, where time is non-dimensionalized
as t = t,(1.5u/2)1/2/L, where L is the box length, and u' represents the
initial rms average velocity fluctuation. The resulting flow fields at t = 0.87
and t= 2.0 are postprocessed to obtain the energy spectra, which are then
compared with corresponding experimental data.

Figure 1 illustrates the computed spectra on both grids at two time
levels for the nominal value of the artificial dissipation scaling factor, i.e.
the value generally employed for steady-state calculations in RANS mode.
Clearly, the finer scales decay more rapidly than in the experimental values.
When the same simulations are performed with the eddy viscosity turned
off, little difference in the energy spectra is observed, suggesting that the
eddy viscosity values are overwhelmed by the levels of artificial dissipation.
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In Figure 2, the same computations are performed with a lower scaling of

the artificial dissipation terms (0.25 of the nominal value). Substantially

better agreement is observed at all scales, although the finest scales are

still dissipated faster than in the experimental results. However, reasonably

good agreement is obtained up to k=10 for the fine grid, and both grids

agree reasonably well at lower wave numbers. When the eddy viscosity is
omitted in these cases, agreement with experiment degrades, particularly
at the lower wave numbers where the dissipation is lower than observed
experimentally.

4. DES Flow Over a Sphere

The current solver is applied in DES mode to predict the flow around a

sphere. A Mach number of 0.2 was prescribed, while the Reynolds number
was set to 104, corresponding to the sub-critical regime (laminar boundary
layer separation), which is similar to the computations performed in [8],
which provides a comparative basis for our results. An unstructured mesh
of 767,000 vertices is employed, in a cubic computational domain of 100
sphere diameters in total length. At the surface of the sphere, the normal
grid spacing is 10-4 sphere diameters.

Two different time-steps of 0.1 and 0.05 are used, where the time-step

is non-dimensionalized as shown in equation (1). Four multigrid levels are
used, and each physical time-step is solved with 25 multigrid cycles, result-
ing in a two order of magnitude reduction in the residuals. All runs were

performed on a cluster of thirty-two 800 MHz Pentium III PCs, for which

the convergence of a physical time-step could be achieved in approximately
6 minutes of wall clock time.

This case has been computed in both DES and URANS mode, using the

Spalart-Allmaras turbulence model without modification in the latter case.

The time history of the drag coefficient is shown in Figure 3 and reveals im-

portant differences between URANS and DES. The mean value of the drag
coefficient in both cases is close to the experimentally reported value of 0.40
from Schlichting [9]. However, the URANS simulation appears to damp out

most of the oscillations present in the DES run, while the DES runs show

a very chaotic oscillatory pattern quite similar to the solutions obtained
by Constantinescu et al. [8]. Spectral analysis of the time-dependent drag
coefficient history reveals a peak corresponding to a Strouhal number of

0.1 which is not in agreement with the values 0.18 to 0.2 reported experi-
mentally [8]. This may be due to an insufficiently long time history sample,
since less than three full periods of this frequency are present in our sample.

In Figure 4, the average surface pressure computed using DES is seen

to provide superior agreement with experimental results at Re=165,000
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reported by Achenbach [10] in the separated region over the URANS re-
sults, and are in agreement with the results reported by Constantinescu [8].
The average computed separation angle of 810 in the DES case compares
reasonably to experimental vale of 82.5' .

5. Conclusions and Further Work

This work prepresents initial efforts at developing and validating a fully
implicit parallel LES/DES solver based on unstructured meshes. In the near
future, we intend to pursue further validation studies on both basic flows
using finer grids and time-steps, and more complex geometries such as flow
over bluff body components of aerospace vehicles. Efficiency improvement
are also under consideration through the use of higher-order time-stepping
procedures and Krylov acceleration methods. This work has been supported
by AFOSR under the management of Dr. Len Sakell.

References

[1] D. J. Mavriplis and S. Pirzadeh. Large-scale parallel unstructured mesh computations
for 3D high-lift analysis. AIAA Journal of Aircraft, 36(6):987-998, 1999.

[2] J. Pelaez, D. J. Mavriplis, and 0. Kandil. Unsteady analysis of separated aerodynamic
flows using an unstructured multigrid algorithm. AIAA Paper 2001-0860, January
2001.

[3] D. J. Mavriplis. Multigrid strategies for viscous flow solvers on anisotropic unstruc-
tured meshes. Journal of Computational Physics, 145(1):141-165, September 1998.

[4] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic
flows. La Recherche Adrospatiale, 1:5-21, 1994.

[5] P. R. Spalart, W-H. Jou, M. Strelets, and S. R. Allmaras. Comments on the feasibility
of LES for wings and on a hybrid RANS/LES approach. Paper presented at the
First AFOSR International Conference on DNS and LES, Louisiana Tech University,
Ruston, Louisiana, August 1997.

[6] G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full- and narrow-
band velocity signals in grid generated isotropic turbulence. Journal of Fluid Me-
chanics, 48(2):273-337, 1971.

[7] M. Strelets. Detached eddy simulation of massively separated flows. AIAA Paper
2001-0879, January 2001.

[8] G. S. Constantinescu and K. D. Squires. LES and DES investigations of turbulent
flow over a sphere. AIAA Paper 2000-0540, January 2000.

[9] H. Schlichting. Boundary Layer Theory. McGraw-Hill, New York, USA, 1979. Seventh
Edition.

[10] E. Achenbach. Experiments on the flow past spheres at very high Reynolds numbers.
Journal of Fluid Mechanics, 54(3):565-575, 1972.



LES AND DES USING UNSTRUCTURED MULTIGRID 467

TABLE 1. Computed Strouhal Number for Various Grid Sizes and Time Steps
for RANS Flow over Circular Cylinder

Grid Size (points) Time Step = 0.5 Time Step = 0.25 Time Step = 0.1

0.252 million 0.19249 0.20304 0.20833

0.631 million 0.19379 0.20408 0.20833
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Figure 1. Comparison of Computed and Measured Energy Spectra for Nominal Artificial
Viscosity Levels with Eddy Viscosity (LEFT) and Without Eddy Viscosity (RIGHT)
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Figure 2. Comparison of Computed and Measured Energy Spectra for Reduced Artificial
Viscosity Levels with Eddy Viscosity (LEFT) and Without Eddy Viscosity (RIGHT)
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Figure 4. Comparison of Computed Average Surface Pressure Coefficient using DES
and URANS versus Experimental Data


