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Abstract

In the present paper an implicit time accurate approach combined with multigrid and precon-
ditioning is used for the large-eddy simulation of low Mach number flows. It will be shown that
the present approach allows an efficiency gain of a factor 4 to 7 compared to the use of a purely
explicit approach. The efficiency varies according to the test case, grid clustering, physical time
stop and requested residual drop.

1 Introduction

Preconditioning is widely used as a convergence acceleration tool for low Mach number flows. This

technique, however, is riot time accurate excluding its straightforward use for unsteady problems.

Multigrid on the other hand is one of the most efficient convergence acceleration tools. In practice,
most multigrid applications are for steady state problems. The dual time-stepping approach can
be used for time accurate problems and has the advantage that non-time accurate tools such a&
preconditioning, multigrid, residual smoothing and local time stepping can be used in a time accurate

context. In the present paper the use of these methods is extended towards large-eddy simulations
of low Mach number flows.

The LES code is an extension of the finite volume Reynolds Averaged Navier-Stokes (RANS)
solver EURANUS, [1]. EURANUS contains an efficient multigrid solver based on the Full Ap-
proximation Storage (FAS) scheme for flows ranging from low subsonic tip to hypersonic, [2][3]. The

Runge-Kutta scheme acts as a smoother for the multigrid. For low Mach number flows, the efficiency
of nsiltigrid strongly depends on the stiffness of the equation and the ability of the smoother to damp
the high frequency errors. The stiffniess is removed with the preconditioning technique which was
applied successfully to different steady and unsteady RANS flows, [4][2], and in the present paper will

be used in the LES context. A central second-order finite volume spatial discretization is used in the
LES code. Fourth-order artificial dissipation is added to increase the high frequency damping of the
smmoother. In order to avoid lamninarization of the flow, the artificial dissipation is only added to the

continuity equation but not to the momentum and energy equations. According to our experience,
this also suffices to guarantee a good overall convergence. As mentioned above, dual time-stepping is

used to update the equations in time. The physical time derivative is discretized either by a backward

differencing method or by a trapezoidal scheme. Numerical experiments show that the trapezoidal

scheme is more flexible and allows bigger time steps as compared to the backward differencing.
The Smagorinsky model is used for snbgrid-scale modeling. Both the classical model and the

dynamic model, [7], are available in the code.
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2 Mathematical Formulation

The preconditioning procedure in the framework of dual time-stepping can be formulated as, [2]:

1 -- + 2-: + -xi,=0 
(1)
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Where r is the pseudo-time, t the physical time and a5Tj, -rij respectively the filtered stresses and
SGS stresses:

6 • =P0fi + Ofiil 2 afk 6i) 4a•')- ----- 0,(4)
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The subgrid-scale heat-flux Qi is defined as:

Qi = p(T - T'i) (6)

It is modeled using an eddy diffusivity SGS model:

Pr Oxi (7)

tit = pCA 2 1jS and Prt = 0.5 or is calculated dynamically. /3 and a axe the preconditioning
parameters. a is taken as a constant around -1, and 0 can be defined locally as, [9],

/3 = Min(Max(. , / ii i(,

With A the smallest cell length, I the biggest characteristic dimension of the domain, At the
physical time step and c the speed of sound. In the present LES calculations At is rather small, due
to physical restrictions, such that • is the dominant term in (8). As a result, /3 will be constant
on the whole field.

By applying the finite volume method to (1), (2) and (3), they can be written in matrix form as
follows:

r + -- + Res (9)
Or at

Written out fully:

1 0 00 0
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(10)



EFFICIENT LARGE-EDDY SIMULATIONS OF LOW MACH 443

The physical time derivative (0o") is discretized with a multi-step scheme:

F-1OQ" - UQ + S + yRes(U) (11)

where S" is the source term defined as:

S" A- (U )- • U) - L (Ul -I (Un-2Q) + -y2Res(Un) (12)
At At At

by multiplying both sides of (11) by F

8Q =F(-3uQ + S, + _,Res(U)) (13)

8r_ At

Now a Runge-Kutta method can be used to reach the steady state in pseudo-time. For stability
reasons the 3 U term is treated implicitly within the Runge-Kuta cycle, for example the i stage is
written as,

Qi+ aiAr AU = Q0 + Ar +'yjRes(U'1 )) i = l,q (14)

after some algebraic manipulations,

Qi (~ f [A aUl 1~~ AT, /3iU:i-l +(5
QC = Q) + (I + csAL 5' )_,(-PA(- At + Sn +y7JRes(U'- 1 ))

'~+~ At aQ 0T At

Calculation of (1 F.iAT 0A 1 in a general compressible case is computationally very expen-

sive. For the sake of simplicity, incompressibility is assumed for the evaluation of o'- The matrix
equals,

1 0 0 0 0
0 -~~-0 0 0

0i ri LAT -1- -- ) -1 l0 ~ B - 0 (0 (16)" At jQ_ 1 0
00 0 0

0 0 0 0 1"1

This simplification seems to be accurate enough and has not brought any convergence problem
for the test cases considered so far.

3 Results

The efficiency of the dual time-stepping method depends on the number of inner iterations (ni) and
the ratio of the physical time step to the time step of a purely explicit scheme (n2 = ýýt-). The gain
achieved will be n 2 /n1 . As a result, the main goal is to choose the physical time step (At) as large
as possible and make the number of inner iterations (n1 ) as small as possible.

This section is divided into three parts, the first part is aboutt the method of discretizing the
physical time derivative and its effect on the maximum allowable time step (At), in the second part
the beneficial effect of preconditioning and multigrid on the requested number of inner iterations
is demonstrated and finally some LES results of the channel, cavity and circular cylinder flows axe
presented.
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3.1 Relation Between the Time Integration and the Physical Time Step

It is a well known fact that the backward differencing scheme unlike the trapezoidal scheme has a
dissipation error proportional to the time step. In order to see this effect and its influence on the LES
results a channel flow at Re, = 180 with a mesh of 33 x 33 x 65 points in the x, y and z directions
is considered. The time derivative is discretized either with a backward differencing (13i = 1.5,
f/0 = -2, )3_1 = 0.5, /3-2 0.0, "fl = 1. and -72 = 0.0) or a trapezoidal scheme ()31 = 1., /3o = 0.0,
0-1 = -1, /30 = 0.0, 7' = 0.5 and 72 = 0.5) Figures (1) and (2) show the mean velocity profile
and the turbulence intensities calculated with the backward differencing scheme and the trapezoidal
scheme, respectively.

The trapezoidal scheme is much more flexible than the backward differencing for large time steps.
By increasing the time step, the results start deviating from the reference solution (obtained with
an explicit time accurate Runge-Kutta method) at At = 0.005 for the backward differencing and at
At = 0.02 for the trapezoidal schenme. This behavior is in accordance with the flat plate boundary
layer results of Weber et al.[1l]. The results are also compared with the DNS data of Kim et al.[12],
the discrepancy between the LES and DNS results is due to the use of a second-order scheme used for
the spatial discretization on a relatively coarse mesh. By using higher order methods more accurate
results can be obtained, [10].

3.2 The Effect of Preconditioning on Multigrid

The success of multigrid depends on the ability of the smoother to remove the high frequency
errors which cannot be supported on coarser meshes. For low Mach number flows preconditioning is
necessary to remove the stiffness of tme equations and to increase the high frequency damping ability
of the smoother.

A test was carried out on the channel flow at Re, = 180, M=0.06 with a mesh of 33 x 33 x 33
points. Figure (3) shows part of the convergence graph for four combinations of multigrid and
preconditioning. The number of inner iterations is fixed to 50.

When preconditioning is not used there is almost no difference between single grid and multigrid,
but when preconditioning is activated multigrid becomes quite efficient.

When both preconditioning and multigrid are switched off, the residual drop of the first mo-
mentum equation is around one order of magnitude, and for the continuity equation is less than
two. When both preconditioning and multigrid are used, the residual drops are more than four and
three orders of magnitude for the first momentum and continuity equations, respectively. Due to
the addition of artificial dissipation, the multigrid works more efficiently for the continuity equation
than for the first momentum equation in which the artificial dissipation is switched off. For these
calculations a = -1 and /3 is globally defined as f32 = 3.V2, where is the velocity at the

centerline of the channel. A three-level V-sawtooth multigrid is used.

3.3 Some LES Results

In all calculations a second-order central discretization is used in space and a second-order trapezoidal
scheme in time. A five-stage Runge-Kutta scheme, a = {f, , 1}, 3 = {1, 0, 0.56,0,0.441 with
three evaluations of dissipation, [6], is used as the smoother for the multigrid. A three-level V-
sawtooth multigrid with a first order prolongation and quadratic restriction is used.

3.3.1 Channel Flow

The rotating and non-rotating channel flows are considered. For the non-rotating channel flow, a
mesh of 33 x 33 x 65 points is used in the x, y and z directions, the streamwise, normal and spanwise
dimensions are 47r x 2 x 27r. Uniform meshes with spacing Ax+ = 71 and Az+ = 18
are used in the streamnwise and spanwise directions. A non uniform mesh with cosinus distribution is
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used in tde wall-normal direction. The first mesh point away from the wall is at y+ = " - 0.87
and the maximum spacing (at the centerline of the channel) is 18 wall units. The Reynolds number

based oil the friction velocity is Re, = 180 and the Mach number at the centerline is M = 0.06. A

dynamic procedure, [7], is used to calculate the Sinagorinsky coefficient and the turbulent Prandtl
number. For this calculation ae = -1 and f3' = 3.U"2n,,,.

For the rotating channel flow, the same mnesh is used and the results of the non-rotating channel

were used as the initial solution. The rotation number is equal to Ro = 0.01. The rotation number

based on the bulk mean velocity (Urn), angular velocity (Q) and channel half width (hi) is,

io = -- (17)
U.-

The turbulence intensities axe shown in Fig. (4), the results are compared with the DNS data of

Kinm et aI.[12] and Kristoffersen et al. [13].

The physical time step is around 200 times bigger than the time step of a purely explicit method,
the residual drop of the continuity equation is fixed to -2.5 and this requires almost 50 inner iterations.

The gain achieved is roughly equal to 2= 4.
50

3.3.2 Cavity Flow

A lid driven cavity flow is considered as anothcr example to test the ability of the present approach.
The flow is driven by the top wall, z = It, in the x direction moving with a velocity U = 1. The

Reynolds immber is Re = ih, = 10000 where It is the dimension of the cube. A 333 mesh is used with
a cosinus distribution of the mesh points. Starting from a stagnant flow, the flow is fully developed

after 32/h/U, after which statistics were collected during a period of 32h/U. The mean velocity

profiles along the vertical and horizontal symmetry lines and the statistics of the fluctuating field
are shown in Fig. 5. The agreement between the experiment, [14], and simulation is satisfactory.

A Smagorinsky model with damping near the wall is used for subgrid scale modeling. For this
calculation a = -1 and 02 = 10.U 2 . The physical time step (At) is around 1000 times bigger than

the maximum time step allowed by the stability condition of an explicit scheme in a comipressible
flow. In ahlost 130 inner iterations the residual of the continuity equation drops four orders of

magnitude. As a rough estimation, and without taking into account the extra work of the multigrid,
the implicit approach is around 1000/130 -- 7.5 times faster than a purely explicit approach.

3.3.3 Circular Cylinder

The cylinder has a diameter of D and a spanwise length of 7rD at a Reynolds number of ReD = 3900.
In the plane normal to the cylinder axis, an O-type grid with 49 x 81 points is used with 81 puoints

on the surface and 49 points in the radial direction, 33 grid points is used over the spanwise length
of irD. The mesh is clustered near the wall to ensure y+ < 1 for the first grid point. A Sinagorinsky
model with damping near the wall is used for subgrid-scale modeling. For this calculation a = -1

and 0'2 = 3.UL. The flow statistics are compared with the experimental data of Lourenco and Shil,
taken from, [16]. Statistics were accumulated over T = 60D/U,,. The distribution of the pressure
coefficient c, and the friction coefficient c1 on the cylinder are plotted in Fig. 6. In the same figure
the mean streamwise velocity component along the centerline is shown.

Figure 7 shows the velocity fluctuations at X X i = -0.0806, with x1 the location where the

time averaged streamwise velocity component is zero.

The residual drop of the continuity equation is fixed to -2. which is obtained after 100 inner
iterations. The physical time step of the implicit method is around 400 times bigger than the time

step of the explicit one. The implicit method is = 4 times faster than the explicit nethod.
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4 Conclusions

Preconditioning and multigrid have been used for large-eddy simulation of low Mach number flows.
A dual time-stepping approach was used to keep the time accuracy of the simulation. The channel
and cavity flows a& well as the flow around a circular cylinder have been considered to test the ability
of the method. It was shown that the present method was 4 to 7 times faster than a purely explicit
approach. The efficiency varies according to the test case, grid clustering, physical time step and
requested residual drop.
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Figure 1: Effect of the time step with the backward-differencing
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Figure 2: Effect of the time step with the trapezoidal scheme
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Figure 3: The effect of ipreconditioning on multigrid for the channel flow calculation with a fixed
numher of inner iterations, left: continuity equation, right: first momentum equation
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Figure 4: T'urbulence intensities, left: non rotating channel flow, right: rotating channel flow
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Figure 5: (left): mean velocity profile along two symmetry lines, (middle): lOtain n/U, (right):
l0.,2w'-/U, lines are used for the simulation data and markers for experimental data.
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Figure 6: (left): cp distribution, (middle): cj distribution, o LES of Breuer [17] (right): mean
streamwise velocity, cp and < u > are compared with the experiment of Lourenco and Shih [16]

Figure 7: (left): velocity fluctuations at X - X_ = -0.0806, o, experiment of Lourenco and Shih
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