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Abstract A number of approaches to the problem of using adaptive mesh refine-
ment in large eddy simulations are considered and tested. These include
unstructured and structured adaptive grids, various treatments of the
convective terms and a number of flow diagnostic procedures. The ap-
proaches are exemplified on a rotating channel flow.

Introduction
An important aspect in applying large eddy simulation (LES) to tech-

nologically interesting flows is the control of the computational costs
involved. Complex flows usually present a variety of regions in which
different resolutions are called for. Moreover, these regions are not static
in the course of the flow evolution. Adaptive mesh refinement is a nat-
ural candidate for keeping computational costs down in these types of
applications. In this paper a number of approaches are compared in
an effort to provide information on the benefits of applying adaptive
mesh refinement techniques to LES computations. A first comparison is
made between an unstructured grid algorithm and a structured grid al-
gorithm. The same computational procedures are implemented in both
codes and comparable resolutions are achieved on a moderately complex
flow. The results are compared to one another and a direct numerical
simulation (DNS) to permit evaluation of grid quality effects. An ad-
ditional comparison is made between various criteria of controlling the
mesh adaptation. A variety of flow feature diagnostic procedures are
allowed to control placement of additional grid points. These include
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comparison to predictor steps on coarser grids and refinement according
to local values of vorticity.

1. Adaptive Mesh Refinement for LES

1.1 General observations

Adaptive mesh refinement (AMR) [5] has shown itself to be a powerful
technique in the computation of flows with dynamic localized structures
that require much greater resolution than that needed for most areas
of the flow. AMR has been widely applied to flows involving shocks
or chemical reactions. There has been less work in the area of applying
AMR to turbulent flow. AMR is not suitable for turbulent flows in which
fine resolution is required everywhere. There are however a number of
flows in which small-scale structures appear and then drive the overall
flow. Such structures have limited spatial and temporal extent. The
streaks that appear in the boundary layer of channel flow are an example.
The overall accuracy of the flow computation is sacrificed if the grid
resolution is not fine enough to capture the streaks. Extending the fine
grid required to resolve wall streaks to the entire domain is prohibitively
expensive. The situation bears some resemblance to those in which AMR
has been applied with success.

There is however a significant difference between standard AMR appli-
cations and turbulent flow. In standard AMR the computational grids
are set up quite frequently, every few time steps. The standard tech-
nique used to identify regions in which additional resolution is required
is to compare predictions on a coarser and finer grid and use Richardson
extrapolation to estimate whether the local truncation error is within
acceptable limits. This implicitly assumes that the finest grids in the
computation can achieve enough resolution so that the asymptotic er-
ror estimates based upon the formal order of accuracy of the numerical
method are valid. In the context of turbulence computations this is
equivalent to stating that the finest grids can achieve DNS-like reso-
lution. This is prohibitive and a modification of AMR to account for
unresolved scales of motion is necessary.

Previous work has also sought to address the problem of differentiat-
ing between scales that should be resolved and others that can be eco-
nomically modeled. An early idea due to Voke [18] was to use multiple
meshes as a tool in accelerating convergence to a quasi-steady state. The
Dynamic Multilevel (DML) method of Dubois, Jauberteau and Temam
[7] can be seen as an alternative to LES. Instead of modeling subgrid
stresses using a physical model, in DML the small scales are computed
less accurately using lower-order schemes with larger time steps. Terra-
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col, Sagaut and Basdevant [16] have suggested freezing the small scales
while a number of time steps are taken on the coarser grids. In order not
to lose small-scale dynamics, they suggest a periodic prolongation of the

large-scale velocity fields using small-scales stored from previous time

steps. Both the large and small scales are advanced in time for a few

steps after which a new large scale velocity field is obtained by filtering.

This procedure raises the question of the equilibrium between small and
large scales during the prolongation stage. This step of the algorithm

might effectively act as an external, non-physical excitation. Qu~m6r6,

Saguat and Couaillier [15] presented a procedure in which patched grids

of different resolutions were used in a channel flow. They show that
considerable economy may be obtained by using fine grids only in the
wall region but also remark that numerical artefacts arose at the grid

boundaries.

1.2 Governing equations

The governing equations are the filtered, compressible Navier-Stokes
equations for an ideal gas

ou OF, OF 2  oF3- + - + ± + 0-
at axi OX2 aX3

U =[ P pil U P 2 i3 PE ]T

i --- PUiU2 + Ai2 - Ti2 - Si2

pUiU33 + A6 3 - Ti3 -- Sji3

(j3ý + p)ii- - - usjfj - k 0

L axi -

with - denoting grid filtering, and density-weighted averaging. The
filtered equation of state is p = pRT, the diagonal term of the subgrid-

stress tensor is neglected [8], the resolved energy is

Pa = fcT + 2P1 2

the Sutherland relation for constant Prandtl Pr = cpp(O)/k(O) = 0.7 is
applied, and the system is closed with variable density eddy-viscosity
and diffusivity models

Tij = pvtj, Qi = P Vt 090
~Prt axi
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1.3 Filtering procedures

The general multi-level filtering framework proposed by Germano [9]
is adopted. Each grid level has an associated filter operation Gn. Filters
from the same family (i.e. top hat in the applications presented here) are

used at all levels. Filtered variables may be defined at each grid level by
(0), (x, t) = (G, * 0) (x, t). The coarsest grid level is denoted by 0 and
the finest existent at a given space-time locale by L. The Navier-Stokes
equations from above, 9tU + N(U) = 0 become

.9t (U), + N ( (U).) = - T.

after filtering. The closure procedure parallels that presented for a single
filtering operation in the previous section.

1.4 Flow feature diagnostics

Standard AMR is typically viewed as a black box that may applied to
the solution of any time varying problem that exhibits localized features.
The criterion governing grid refinement is mathematical in nature and
typically does not include any physical knowledge about the particular
problem being solved. On the other hand, most multi-level techniques
that have been proposed for turbulence simulation rely heavily upon
physical modeling of the subgrid scale effects. For instance, in DML [7]
the freezing of the small scales when taking coarse grid time steps is
justified by the different characteristic times in which small and larger
scale turbulence achieves local equilibrium. The point of view espoused
in this paper is that probably both ingredients are required in order
to achieve a successful algorithm. The particular method studied here
is a combination of a posteriori error analysis combined with physical
analysis.

Initially the standard technique of error estimation based upon Richard-
son extrapolation [5] was tried. This was unsatisfactory as it led to a
rapid increase in the overall number of points. A resolution typical of
DNS was set up by this procedure. The approach that was successful
consists of a combination of error estimation and physical reasoning.
Recently, Adjerid et al. [1] have analyzed the error of a class of discon-
tinuous Galerkin methods applied to hyperbolic problems that include
the standard finite volume schemes typically used in compressible fluid
computations. Essentially, the procedure recognizes that for a given
polynomial approximation of the solution of degree p over an element of
extent h, the discretization error is generally O(hP+'). At certain points
within the element, that correspond to the roots of the difference of two
Legendre polynomials, the error is 0(hP+ 2 ). For details the reader is
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directed to [1]. The different spatial orders of accuracy permit a rapid
a posteriori estimate of the accuracy achieved on the cells at any one
particular grid level. Rather than obtaining the error estimate by com-
parison to a test integrating in time on a coarser grid, only the results
from a trial time step on the current grid level is required.

Changing the mathematical error estimation method is not enough.
Tests using the a posteriori error estimate again led to excessive refine-
ment and consequent loss of economy of computation. An examination
of the flow field showed that this occurred even in regions where the
fluid turbulence was essentially isotropic and suitable for modeling by
the subgrid scale terms. A physical correction of the error estimator
was therefore added. In the regions flagged for refinement by the error
estimator two physical indicators were computed: the enstrophy IV x ill
and the scalar product of the local velocity and vorticity I (V x ii) • '71.
Only when one of the physical indicators exceeded a threshold value
was the region subject to refinement. In effect the physical indicators
act to discriminate interesting dynamics that includes prominent vortex
tubes from that of locally near-isotropic turbulence. The cutoff value
was determined by numerical experimentation. This is unsatisfactory
and further analysis is underway to establish a more rational procedure
of establishing a cutoff value. Other indicators suggested by coherent
structure eduction procedures are also undergoing tests.

1.5 Communication between grids

An important aspect in a multilevel algorithm is to establish proce-
dures for communication of data between grids on various levels. This
involves two operations: (1) a prolongation operation P from coarse to
fine grids and; (2) a restriction operation R from fine to coarse grids.
Standard AMR typically uses a linear interpolation to define P and a
cell averaging procedure to define R. A modification of these procedures
was found to be necessary in the context of applying AMR to LES. The
prolongation operator is applied whenever new fine grids are generated.
Generally there is significant overlap between the new fine grids and
previously generated grids at the same level since coherent structures
that require better resolution are advected with the mean flow. In order
not to lose dynamic content (high frequency contributions), fine grids
are first initialized to previously computed values at the same grid level
in areas of grid overlap. The prolongation operator is only applied to
newly created fine grids, at level 1 say, where no grids of level I existed
previously. Straightforward linear interpolation was found to induce
excessive subgrid cell excitation. This had the effect of increasing the
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number iterations in the pseudo-time variable (see below) required to
achieve convergence at a given physical time step. Faster convergence
was achieved by using the truncation of the dispersion relation from the
Navier-Stokes equations to the wavenumbers resolvable on the newly cre-
ated grid. This relation was used to define the newly resolvable spectral
content by assuming that the energy spectrum follows a power law. The
power law coefficient was taken to depend on the region of the spectrum,
i.e. a quadratic interpolation of the power law coefficient from m = 4 in
the energy containing eddy region to m = -5/3 in the inertial range.

A number of previous multi-level turbulence simulations (e.g. [15])
mentioned difficulties at the boundaries between coarse and fine grids
due to the effect of averaging. Simple averaging was found to have the
same effect in the computations carried out here. However, conservative
fix-ups [5], [4] in which the more accurately computed fluxes on fine grids
are used to update adjoining coarse grid values was found to work well.

2. Numerical Methods

2.1 Unstructured Grid Algorithm

The unstructured grid algorithm uses an embedded tetrahedral grid
approach implemented as an octal tree structure (OCTLES - Octal Tree
Large Eddy Simulation code) [13]. There are several options for treating
the convective terms from the Navier-Stokes equations. These include
multi-dimensional fluctuation splitting [6], second order reconstruction
and approximate Riemann solvers along the cell interface normal di-
rection [17] and multi-dimensional wave propagation techniques [12].
The convective terms are advanced in time explicitly. Diffusive terms
are treated implicitly. A pseudo-time stepping technique [3] is used
within each physical time step to solve the resulting implicit system.
Subgrid-scale turbulent stresses are included using the dynamic model
[10]. An interesting feature of this application of the dynamic model is
that subgrid-scale stresses are computed for each grid pair between the
coarsest, initial grid and the finest grid present. This has been observed
to speed up the convergence of the pseudo-time iterations required to
determine the contribution of the viscous terms. The code has been vali-
dated [14] by comparison to a number of test cases proposed in [2]. Grid
adaptation is carried out by recursive subdivision of an initial tetrahedral
grid.
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2.2 Structured Cartesian grid algorithm

An alternative to the complicated program structures required for
unstructured girds is to use embedded Cartesian grids [5]. The grid
generation procedures are much simpler in this case, but the prob-
lem of boundary representation appears for general geometries. In or-

der to test the AMR-LES procedures, sample computations have been

performed only in a rectangular geometry. The computer code for
this approach (BEARCLAW -Boundary Embedded Adaptive Refine-
ment Conservation Law) allows for a number of treatments of the con-
vective and source terms. These parallel those presented in the unstruc-

tured grid case. The BEARCLAW code may be freely downloaded from
www. washington. edu/-claw.

3. Applications

3.1 Stationary and rotational channel flow

The above procedures arc now tested on channel flow. Both a sta-
tionary channel and one rotating along an axis in the spanwise mean
flow direction are considered. The AMR-LES results are compared to
DNS results [11]. The half channel width, bulk velocity Reynolds num-

ber is Re = Ubh/v = 2900. The rotating channel has a Rossby number
Ro = 2Qh/Ub = 0.5. The second order wave propagation algorithms
of [12] are used to treat the convective terms in both the structured
and unstructured computations presented here. A comparison between
the DNS results and those obtained by the two AMR methods is pre-
sented in fig. 1-2 for the turbulent stress. An initial, coarsest level, grid

of dimensions 32x32x32 was used. A tetrahedral grid was obtained by

splitting each hexahedron of the regular Cartesian grid in six tetrahedra.
The AMR results are within 1% of the DNS results for the stationary
channel flow. Both the structured and unstructured methods perform
similarly on this case. This is thought to result from the overall sym-
metry of the flow and the fact that the tetrahedral grid was obtained

by destructuring the Cartesian grid. It is apparent from fig. 1 that the
AMR algorithms place finer resolution in the high shear regions closer
to the walls. When rotation is applied the AMR-LES methods exhibit
lower accuracy. The maximum error observed in the turbulent stress
was 2.4%. Also, the loss of symmetry imposed by the rotation led to dif-

ferent grid placement in the unstructured algorithm with respect to the
Cartesian algorithm. Higher error levels were observed for the tetrahe-
dral grid algorithm. Instantaneous vorticity plots of the flow computed
by the Cartesian AMR-LES method are presented in fig. 3-4. It may
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be observed that the AMR procedure captures the rich dynamics of the
near-wall region and the relaminarization which occurs on the rotating
channel suction side.

4. Conclusions

An adaptive mesh refinement methodology for large eddy simulation
has been proposed. LES in itself reduces the dynamic complexity of
simulating fluid turbulence. It is asserted that adaptive refinement may
offer further reductions of the degrees of freedom that need to be re-
solved. The AMR-LES algorithm proposed here differs from standard
AMR algorithms. There are always some dynamics taking place at the
unresolved scale, so the usual error estimation procedures used to add
mesh points do not carry over directly. Rather, a combined strategy
incorporating both numerical estimates and physical flow features is ap-
plied. The overall effect is to employ greater grid resolution in regions
in which the subgrid effects relative to grid level I are diagnosed as in-
volving significant deviations from isotropic turbulence. In regions in
which the indicator suggests that subgrid fluctuations are isotropic in
nature, a standard dynamic, eddy-viscosity model is used to provide
closure terms. Full testing of the method is still in progress and shall be
reported at a later date.
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Figure 1. Comparison between DNS computation (line)[11], Cartesian grid AMR
(squares) and tetrahedral grid AMR (diamonds). The turbulent stress along the
channel span. Notice the larger grid spacing close the channel centerline and the
smaller grid spacing near the walls.
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Figure 2. Similar to previous figure but for rotating channel, Ro =0.5.
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Figure 3. Isovorticity surfaces computed using Cartesian AMR, stationary channel.

Figure 3. Isovorticity surfaces computed using Cartesian AMR, rotating channel

Ro = 0.5.


