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1. Introduction

In the Large Eddy Simulation (LES) of turbulence, we simulate the spa-
tially filtered velocity field. The governing equations are obtained by ap-
plying a spatial filter to the Navier-Stokes equations. The set of filtered

equations are solved numerically to obtain the solution in terms of filtered

quantities. Though successful LES have been performed for several differ-

ent flows (Lesieur and M6tais, 1996; Meneveau and Katz, 2000), LES for
wall bounded flows posses some critical challenges (Piomelli et al., 1989;
Balaras et al., 1996). Some of the difficulties in LES modeling of wall

bounded flows are due to the strong inhomogeneity of the turbulence, the

scaling of the largest scales near the wall, and the strong filter inhomogene-

ity commonly employed to accommodate the boundary conditions. Because
of these issues, many of the reported LES of wall bounded flows have no
filtering at all in the wall normal direction. The problem associated with

strong filter inhomogeneity can be thought of as arising from the incon-
sistency of the requirement to represent a sharp boundary in a simulation
which resolves only large scales.

In a different context, immersed boundary methods are promising tools

for treating complex geometries in fluid dynamics simulations. In these
methods the irregular boundary is embedded in a regular grid and a forc-
ing term is included to account for the embedded boundary. This forcing is
such that a prescribed velocity is achieved at the given surface boundary.
The forcing is nonzero only in the neighborhood of the boundary (few grid

points near the wall), but due to incompressibility of the flow, the forcing
affects the entire flow field. The forcing can be considered to be singular
field in the computational domain. The concept was implemented by Peskin
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(1972) to simulate flow around heart valves, and Goldstein et. al. (1993)
used this technique to simulate flows in complex geometries using a pseudo
spectral method. Due to the global nature of the expansion functions used
in the spectral methods, discontinuities produce Gibbs phenomenon in the
flow field. According to Goldstein et. al. (1993), this oscillation does not
corrupt the flow field as the flow evolves in time. Mohd-Yusof (1997,1998)
used a different expression for the forcing to remove the severe time step
restriction of the method developed by Goldstein et. al. (1993). This ap-
proach was used by Verzicco et. al. (1998) to perform an LES in complex
geometries. However, in immersed boundary techniques it is in general dif-
ficult to preserve higher order accuracy and high resolution as is generally
required in turbulent simulations. This difficulty mainly arises due to the
presence of discontinuities at the boundaries.

These two related observations lead us to propose a new approach for
embedding boundaries in the context of LES. In this approach, we treat the
wall by 'filtering through it'. A homogeneous or nearly homogeneous filter
is applied to the flow field including the embedded boundary. As a result,
the boundary is no longer a sharp interface, but is diffused across the filter
width. To recover a Direct Numerical Simulation (DNS), the filter width
is made small enough to resolve all relevant scales of motion, but remains
finite so that the boundary is not a sharp interface. In LES, the scale on
which the boundary is resolved is consistent with the resolved scales of
motion.

2. Governing equations and numerical methods

To illustrate the concept of 'filtering through the wall', we consider the heat
equation on y E [-1, 1]. In the computational domain, we include a buffer
region outside the boundaries, where the velocities are zero.

a 2 IYI < 1 (1)Tt 9y2

U =0 lyl > 1 (2)

These two equations can be combined by introducing a Heaviside function
H(y).

Ou H~yO -L2u
T = (Y)-'9y2 - L < y :ý L

where

oth1 e rwi<H~y = 0 otherwise
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A homogeneous filter is applied on the domain -L to L, including the
boundary. For any function f, the filtered function f is obtained by

] l G(x -)(•)a (3)

where G is the filter kernel. The resulting filtered equation is

Oii a~ii 49u auo- -02 + G(y - 1)-(1) - G(y + 1)-(-1)

-L _y < L

The boundary term, b is defined:

b=a(y-1) u(1) - (y + 1)--u (-1)

which includes the unfiltered derivatives at the boundary. These are not
known from the simulated filtered field. We propose to estimate the stress

by applying a suitable constraint on the field in the buffer domain, jyj > 1.
The boundary terms obtained by this technique are similar to the forcing
term used by (Goldstein et al., 1993) except the forcing is distributed in
the domain according to the filter kernel.

Now consider the Navier-Stokes equations for incompressible flows and
apply a similar technique. After filtering the equations and taking account
of the filtered boundary, the filtered equations are

aiii
Oxi 

0

_• __ _~ 1 0 0
f--- -t- j - - + - - ý 3 ia + bi

t Oxj xi Re ixjOxj

where bi is the boundary term. This boundary term is expressed as

bi(x) = fa ur(x')ij G(x - x') dx'

where a is the stress at the boundary, including pressure and viscous stress,
OR is the boundary of the fluid region R and nj is the unit normal to the
surface.

In simulating wall bounded turbulent flow, a large number of grid points
are required to resolve the near wall layer, as a result, in many practical
applications it would be difficult to apply an LES that resolves the wall
layer. In many LES of wall bounded flows, approximate boundary condi-
tions are used to model the effect of the wall layer (Balaras et al., 1996).
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The approximate boundary conditions are prescribed in terms of the wall
shear stress, so wall stresses must be determined in terms of the resolved
velocities.

In the present formulation, the unfiltered wall stresses are also required,
and for analogues reason. Even though the boundary, or the flow near it is
not resolved in LES, it is necessary to represent the transfer of momentum
from the flow to the wall, which is governed by the wall stresses. In the
current description, in which the unfiltered velocity is zero in the buffer
domain, the wall stress is the surface forcing required to ensure that mo-
mentum is not transfered to the buffer domain. That is, that the velocity
remains zero. This suggests a technique for determining the wall stress.
Instead of defining a force to make the velocity zero at the boundary as in
Mohd-Yusof (1997), we choose U'wall to minimize the transport of momen-
tum to the exterior domain. To this end, the wall stresses at each time step
is defined by minimizing

E=]Iii 2 + - dx (4)
Dt

where the integral is over the buffer domain. The IiIt2 term forces the energy

in the buffer domain to be small, and the a -i- term ensures that the
transfer of energy into the domain is small. The constant a controls the
balance between these two competing requirements and is set to a value
of order At 2 . In the Fourier spectral method employed in section 3 for the
channel flow, this minimization is straight forward since it can be done
independently for each (ks, k,) wavenumber, resulting in a 6-parameter
optimization in (cay, ayysazy).

3. Results and Discussion

In this section, we present the results of two numerical tests of the filtered
boundary technique.

In both cases, a plane channel flow is simulated. Periodic boundary
conditions are applied in streamwise (x) and spanwise (z) directions, and
in the wall normal direction (y), a buffer region outside the wall is included,
and periodicity is imposed in the buffer region as well. A Fourier cutoff filter
is applied in the wall normal direction effectively filtering the wall, and a
Fourier spectral method is used. A low storage second-order Runga-Kutta
method is used to time discritize the nonlinear terms and the viscous terms
are treated using an integrating factor.
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3.1. THE EVOLUTION OF SMALL AMPLITUDE DISTURBANCES
In this test, evolution of a linear stability mode is illustrated. The exact

solution in this case has the form:

u(x, y, t) = (1 - y2 ) + cRe{jPy(y)ei(0X-Wt)}, (5)

v(x,y,t) = EReliao(y)ei(axwt)}, (6)

where 0 is the Orr-Sommerfeld eigenfunction (appropriately normalized),
w is the complex frequency (eigenvalue), a is the prescribed wave number,
and c is the perturbation amplitude. The simulation was performed with
a = 1 at Reynolds numbers Re, = 10000. For this case, the most unstable
mode has eigenvalue w = 0.23752649 + iO.00373967. An initial condition
was constructed from the eigenfunction with the most unstable mode and
then filtered. Two cases were run, with 64 and 256 Fourier modes in the wall
normal direction. A total of 20 "points" are in the buffer domain outside
of the channel (ylY > 1).

The exact unfiltered pressure fluctuations are formally zero in the exte-
rior, resulting in a discontinuity in pressure, and the resulting Gibbs phe-
nomenon in the filtered pressure is shown in figure lc. The wall normal
pressure gradient appears in the v-momentum equation, and this quantity
is dominated by the filtered delta function at the boundary and the result-
ing Gibbs phenomenon (figure 1d). Yet the Gibbs phenomenon in velocity
perturbations in figure la and lb is imperceptible. The reason is that the
terms b, (figure le) has exactly the same structure as the pressure gradient
and cancel the Gibbs phenomenon (figure if). The role of the boundary
terms in the momentum equation is thus clear. They regularize the stress
discontinuities at the wall (both pressure and viscous stresses).

In these tests, the intent is to use a filter width sufficiently fine that the
only input is the filtering of the boundary (i.e. a "DNS").

The average growth rate (wi, imaginary part of the complex frequency)
of the disturbance was measured as a function of time. For a = 1, the
complex frequency (w) is given by

w = -i(1/O)(dft/dt) (7)

Due to errors introduced in the initial conditions, there is a transient be-
fore the asymptotic growth rate is reached. The solution with 64 grids in y
direction under predicts the growth rate (.00286091) and this is apparently
due to inadequate resolution in the domain. The growth rate of the distur-
bance is correctly reproduced by the simulation with Ny = 256 (.00374844
vs. the value from linear theory .00373967).

This is a severe test for the filtered boundary approach, since the Fourier
spectral method behaves poorly in presence of discontinuities and because
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Figure 1. Effect of the boundary terms in the test of evolution of small disturbances
in a channel flow. (a) filtered u velocity, (b) filtered v velocity, (c) filtered pressure, (d)
pressure gradient, (e) boundary term for v equation, (f) pressure gradient + boundary
term. - real part, - - - imaginary part.

the growth rate is very sensitive. But, the boundary terms precisely account
for the poor behavior of the filter and provides a good representation of the
filtered eigenfunction.

3.2. TURBULENT FULLY DEVELOPED CHANNEL FLOW

To demonstrate the applicability of this technique in simulating turbu-
lent flow, a fully developed channel flow is computed on a 64 x 128 x 64
grid with 20 point in the buffer region. Based on the wall shear velocity u,
and channel half-width 6, the Reynolds number

Re, = -- (8)
/V
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Figure 2. (a)Mean velocity, (b)u..ns, normalized by wall shear stress. - present simu-
lation Re, 90, - - - Kim et. al. (1987) Re, 180.

of this flow is 92.23. The corresponding Reynolds number based on the
centerline velocity and channel half-width is 1485. The streamwise and

spanwise dimensions of the channel are 47w3 and 4/37rJ respectively. The
flow field was initialized by spatially filtering a DNS flow field obtained at
Re, = 180 by Kim et al. (1987).

The governing equations were integrated until the mean flow reached
statistical equilibrium (approximately 46/u,). Instantaneous results are

shown at non dimensional time 7. The mean velocity distribution normal-
ized by the wall shear velocity is shown in figure 2a, along with the data

reported by (Kim et al., 1987) at Re, T 180. Also shown in figure 2b is

the streamwise turbulent intensity. Note that the computed peak is 9.84%

lower than the Re, = 180 case, and this is not a low Reynolds number effect

(Keefe et al., 1992). The cause of this low peak in Urms is not clear at this
point, but the near wall resolution may be responsible. In other ways, the

turbulence near the wall is consistent with expectations for wall bounded
flows. For example, familiar flow structures (streaks, inclined shear layers)

are present near the wall and are approximately of the expected scale.

4. Conclusion

A new approach for treating boundaries in the context of LES, especially
extended boundaries, was developed, and applied to the computation of
turbulent channel flow. In this representation, the issue of highly inhomo-

geneous filtering near a wall in LES is obviated, since homogeneous filters
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can be used since the boundary itself is filtered. In this formulation, the
unfiltered stresses at the wall are required, and are obtained from a mini-
mization of perturbations in the buffer domain.

The method was successfully tested in the evolution of a Tollmien-
Schlichting wave in a channel flow. Also a low Reynolds number fully de-
veloped turbulent channel was simulated. The new approach is promising
for the treatment of boundaries in LES, and the application of optimal
LES (Langford and Moser, 1999) to the filtered boundary formulation is
planned.
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