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Abstract.' Proper control of the numerical-dissipation/filter to accurately resolve all relevant
multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for
long-time numerical integrations poses a great challenge to the design of numerical methods. The
required type and amount of numerical-dissipation/filter are not only physical problem depen-
dent, but also vary from one flow region to another. An approach for the automatic detection of
different flow features as distinct sensors to signal the appropriate type and amount of numerical-
dissipation/filter for non-dissipative high order schemes is proposed. These scheme-independent
sensors are capable of distinguishing shocks/shears, turbulent fluctuations and spurious high-
frequency oscillations. In addition, these sensors are readily available as an improvement over
existing grid adaptation indicators. The same shock/shear detector that is designed to switch on
the shock/shear numerical dissipation can be used to switch off the entropy splitting form of the
inviscid flux derivative [31] in the vicinity the discontimnous regions to further improve nonlinear
stability and minimize the use of numerical dissipation. The rest of the sensors in conjunction
with the local flow speed and Reynolds number can also be used to adaptively determine the
appropriate entropy splitting parameter for each flow type/region. The goal of this paper is to
further improve nonlinear stability, accuracy and efficiency of long-time numerical integration of
complex shock/turbulence/acoustics interactions and numerical combustion. The minimization
of employing very fine grids to overcome the production of spurious numerical solution and/or
instability due to under-resolved grids is also sought [29, 6].

1. Motivation and Objective

When employing finite time steps and finite grid spacings in the long-time integration of umil-
tiscale complex nionlinear fluid flows, nonlinear instability commonly occurs and the use of a
numerical-dissipation/filter is unavoidable. Aside from acting as a post-processor step, most
filters serve as some form of numerical dissipation. Without loss of generality, "numerical-
dissipation/filter" is, hereafter, referred to as "numerical dissipation" unless otherwise stated.
The required type and amount of numerical dissipation can vary drastically from one flow region
to another (within the same problem) and are highly problem dependent. This is particularly
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366 H. C. YEE AND B. SJOGREEN

true for unsteady high-speed turbulence and/or combustion problems. For this type of problem,
it is of paramount importance to have proper control on the type and amount of numerical
dissipation in regions where it is needed but nowhere else. Inappropriate type and/or amount
can be detrimental to the integrity of the computed solution, especially for problems with no
known analytical solution and/or experimental data for comparison.

The linear and nonlinear numerical dissipation presently available is either built into the
numerical scheme or added on to the existing scheme. The built-in numerical dissipation schemes
are, e.g., upwind, flux corrected transport (FCT), total variation diminishing (TVD), essentially
non-oscillatory (ENO), weighted ENO (WENO), and hybrid schemes (e.g., those that switch
between spectral and high-order shock-capturing schemes). The built-in nonlinear numerical
dissipation in TVD, ENO and WENO schemes was designed to capture accurately discontinuities
and high gradient flows while hoping to maintain the order of accuracy of the scheme away from
discontinuities.

There exist different specialized linear and nonlinear filters to post process the numerical
solution after the completion of a full time step of the numerical integration. Since they arc
post processors, the physical viscosity, if it exists, is taken into consideration. The main design
principle of linear filters is to improve nonlinear stability, under-resolved grids [6] and de-aliasing
of smooth flows, while the design principle of nonlinear filters is to improve the nonlinear stability
and accuracy near discontinuities as well. See, for example, the present proceedings and [9, 6,
7, 27] for forms of linear filters, and see [30, 31, 21] for forms of nonlinear filters. For direct
numerical simulation (DNS) and large eddy simulation (LES), there are additional variants of
the filter approachl.

For the last decade, CPU intensive high order schemes with built-in nonlinear dissipation
have been gaining in popularity in DNS and LES for long-time integration of shock-turbulence
interactions. Unfortunately, these built-in dissipations cannot clearly distinguish shocks/shears,
from turbulent fluctuations and/or spurious high-frequency oscillations. In [30, 31, 21], it was
shown that these built-in numerical dissipation are more dissipative and less accurate than the
nonlinear filter approach of [30, 31, 21] with a similar order of accuracy. It was also shown
that these nonlinear filters can also suppress spurious high-frequency oscillations. However, a
subsequent study of Sj6green & Yee [23] showed that the high order linear filter can sustain
longer time integration more accurately than the nonlinear filter for low speed smooth flows. In
other words, for the numerical examples that were examined in [23], the high order linear filter
can remove high-frequency oscillations producing nonlinear instability better than the second-
order nonlinear filter. Higher than third-order nonlinear filters might be able to improve their
performance or might outperform the high order linear filters at the expense of more CPU time
and added complexity near the computational boundaries. These findings prompted the design
of switching on and off or blending of different filters to obtain the optimal accuracy of high order
spatial difference operator as proposed in Yee et al. and Sjogreen & Yee [31, 21]. The missing link
of what was proposed in [31, 21] is an efficient, automated and reliable set of appropriate sensors
that are capable of distinguishing shocks/shears, from turbulent fluctuations and/or spurious
high-frequency oscillations for a full spectrum of flow speeds and Reynolds numbers.

The present paper is a sequel to [30, 31, 21]. The objective here is to propose an adaptive
procedure employing appropriate sensors to switch on the desired numerical dissipation where
needed and leave the rest of the region free of numerical dissipation contamination while at
the same time improving nonlinear stability of the entire numerical process. In addition, the
minimization of employing very fine grids to overcome the production of spurious numerical
solutions and/or instability due to under-resolved grids is sought [6]. It was shown in [17, 8, 31, 21]
that conditioning the governing equations via entropy splitting of the inviscid flux derivatives [31]
can improve the over all stability of the numerical approach for smooth flows. Therefore, the same
shock/shear detector that is designed to switch on the shock/shear numerical dissipation can
be used to switch off the entropy splitting form of the inviscid flux derivative in the vicinity the
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discontinuous regions to further improve nonlinear stability and minimize the use of numerical
dissipation. The rest of the sensors, in conjunction with the local flow speed and Reynolds
number, can also be used to adaptively determine the appropriate entropy splitting parameter

for each flow type/region. These sensors are readily available as an improvement over existing
grid adaptation indicators. If applied correctly, the proposed adaptive numerical dissipation

control is scheme independent, and can be a stand alone option for many of the favorite schemes
used in the literature. Although the proposed adaptive procedure is scheme independent, we
prefer a complete treatment of the numerical approach in the following framework:

1. For stability considerations, condition the governing equations before the application of the

app)roi)riate numerical scheme.
2. For consistency, compatible schemes that posses stability properties similar to those of the

discrete analogue of the continuum are preferred.
3. For the minimization of numerical dissipation contamination, efficient and adaptive nu-

merical dissipation control to further improve nonlinear stability and accuracy should be
used.

4. For practical considerations, the numerical approach should be efficient and applicable to
general geometries. An efficient and reliable dynamic grid adaptation should be used if

necessary. Note that the computation of the illustrative examples used such a numerical
approach [30, 31, 28, 21, 8, 16].

A brief summary of (1)-(3) is discussed in the next three sections. Some representative examples
to illustrate the performance of the approach are given in Section 5.

2. Conditioning of the Governing Equations

Traditionally, conditioning the governing partial differential equations (PDEs) usually referred
to rewriting the governing equations in an equivalent set of PDEs in order to prove the stability

and/or well-posedness of the PDEs. When numerical methods are used to solve PDEs that
are nonlinear, it is well-known that different equivalent forms of tile governing equations might
exhibit different numerical stability, accuracy and/or spurious computed solutions, even for
problems containing no shock/shear discontinuities. There are many conditioned forms of the

governing equations proposed in the literature. Different conditioned forms of the convection
fluxes and the viscous fluxes have been proposed for the incompressible and compressible Navier-
Stokes equations. Here we mention a few which are precursors of the so called entropy splitting
of the compressible Euler equations [31]. If a method-of-lines approach is used to discretize these
equations, the entropy splitting reduces to the splitting of the convection flux derivatives.

The splitting of the convection terms (for both the compressible and incompressible Navier-
Stokes equations) into a conservative part and a non-conservative part has been known for a
long time. In the DNS, LES and atmospheric science simulation literature, it is referred to as the

skew-symmetric form of the momentum equations [1, 14, 2, 35]. It consists of the mean average of

the conservative and non-conservative (convective form [35]) part of the momentum equations.
The spatial difference operator is then applied to the split form. Fronm tile numerical analysis
standpoint, the Hirt and Zalesak's ZIP scheme [12, 34] is equivalent to applying central schemes
to the non-conservative momentum equations (convective form of the momentum equations).
MacCormack [15] proposed the use of the skew-symmetric form for problems other than DNS
and LES. Harten [10] and Tadmnor [26] discussed the symmetric form of the Euler equations
and skew-adjoint form of hyperbolic conservation laws, respectively. Although the derivation in
these works is different, the ultimate goal of using the split form is almost identical. This goal is

to improve nonlinear stability, minimize spurious high-frequency oscillations and robustness of
the numerical computations. See [33, 23] for a historical consolidation of these approaches. The
canonical splitting used by Olsson & Oliger [17] is a mnathematical tool to prove the existence

of a generalized energy estimate for a symmetrizable system of conservation laws. For the tiler-
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mally perfect gas compressible Euler equations, the transformation consists of a convex entropy
function that satisfies a mathematical entropy condition. The mathematical entropy function,
in this case, can be a function of the physical entropy. Therefore, the resulting splitting was
referred to as entropy splitting for ease of reference by Yee et al. [31]. The entropy splitting
can be viewed as the more general form which provides L 2 stability proof of the nonlinear Euler
equations with physical boundary conditions included.

Consider a general nonlinear system of conservation laws,

Ut+F(U)x=O, a<x<b. (2.1)

If the conservation law has an entropy function, it can be transformed into a symmetric con-
servation law in terms of a new variable W. The change of variables WU/IW is symmetric and
positive definite, and the new Jacobian OF/lW is symmetric. If furthermore U and F are ho-
mogeneous in W of degree /, which is the case for the thermally perfect gas Euler equations for
any/3 0 -1, the formulas become simple. In that case we insert the change of variables into the
conservation law, and define the split form of the flux derivative [17]

Ut,+- F±F+ FV-FWA==0, (2.2)

with /3 a splitting parameter (/3 = oo recovers the original conservative form). Here /3 j -1 and,
for a perfect gas, / > 0 or P < 1"y-,. The theory only gives the range of 63 and does not give any
guidelines on how to choose f3 for the particular flow. The vectors Fw and W can be cast as
functions of the primitive variables and /3. From the study of [31], #3 is highly problem dependent.
Multiplying the above equation by W (where (p, q) denotes the scalar or inner product of the
vectors p and q), gives

-(1 + 03)(W, Ut) = /(W, F.) + (W, FwW.) = /3(W, F.) + (FwW, W.). (2.3)

Integration by parts in space gives

(1+ /3)(W, Ut) = -[W"'FwW]a (2.4)

from which we obtain the estimate

d(W, Uw W = (W, UwW) + (W, (UwW)t) = (Ut, W) + (W, Ut) =
Tt ~ ~~(1 + 0) (W, Vt) = - [W'rF,, W]b,1(25

In order to have an energy estimate, the boundary term [WTFwW]b should be of the sign
that makes the time derivative of the norm negative. For stability the entropy norm (W, UwW)
should be bounded.

3. Discrete Analogue of the Continuum

For ease of reference, "scheme" or more precisely "interior scheme" here generally refers to spatial
difference schemes for the interior grid points of the computational domain, whereas "boundary
scheme" is the numerical boundary difference operators for grid points near the boundaries.
However, without loss of generality, we also adopt the conventional terminology of denoting
"scheme" interchangeably as either the "combined interior and boundary scheme" or just the
"interior scheme" within the context of the discussion. Before 1994, rigorous stability estimates
for accurate and appropriate boundary schemes associated with fourth-order or higher spatial
interior schemes were the major stumbling block in the theoretical development of comibined
interior and boundary schemes for nonlinear systems of conservation laws. Olsson [18] proved
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that an energy estimate can be established for second-order central schemes. To obtain a rigorous

energy estimate for high order central schemes, one must apply the scheme to the split form
of the inviscid governing equation. A discrete analogue of the continuum using a semi discrete

approach can be written as

dUj(t) [ 1
dt 1 1 3 DF(Uj)- +-)3Fw(Uj)DWj. (3.1)

Here, D is a difference operator, having the summation by parts (SBP) property [18, 25]. The
estimate

wtd(W, UwVWh =T (32UW, = -WT Fw(•WJ) WJ + [Fw,(w1)wm (3.2)

in the discrete scalar product follows in the same way as for the PDE with indices 1 and J
the end points of the computational domain, and h the grid spacing. Here the SBP satisfying

difference operator, for example, consists of central difference interior operators of even order

together with the corresponding numerical boundary operators that obey the discrete energy
estimate. See Olsson and Strand for forms of the SBP boundary operators [18, 25].

For the full discretization of the problem, we should discretize in time in such a way that

the discrete energy estimate also holds. The obvious solution would be to discretize in time in a

skew symmetric way, in a manner similar to the spatial discretization, e.g.,

1+3 1+, 1 +13 1+

However, it turns out that the SBP property of the time difference quotient leads to a problem

which is coupled implicitly in the time direction. To solve it we have to solve a nonlinear system
of equations for all time levels in the same system, leading to an impractically large computa-

tional effort. Furthermore, numerical experiments shown in Sjbgreeri & Yee [23] indicated that a

bounded L2 entropy norm (W, UwW) h does not necessarily guarantee a well behaved numerical
solution for long-time integrations. In other words, L2 stability does not necessarily guarantee
an accurate solution. In practical computations, the classical Runge-Kutta time discretizations
using the method-of-line.s approach (which we used for our numerical experiments) works well,

but we have not been able to prove a time discrete entropy estimate for this method. In addition,

numerical experiments shown in [23] indicate that the time discrete problem does not have a
decreasing entropy norm for all values of 3. Numerical experiments in Yee et al. [31, 19] also

indicate the wide variations of the '3 value for a full spectrum of flow problems. For example,
if a constant '3 is used for problems containing shock waves, a very large value of 13 is needed.

Otherwise diverge solution or wrong shock location and/or shock strength are obtained. With
these findings, employing a constant /3 (within the allowable range of '3) throughout the entire

computational domain is not advisable unless the flow problem is a simple smooth flow. Studies
in [31, 21] indicate that the split formrl (if the inviscid flux derivatives does help in minimizing

the use of numerical dissipation. What is needed is adaptive control of the ' parameter from
one flow region to another as well as from one physical problem to another.

We would like to point out that for non-homogeneous physical boundary conditions, it is

important to impose these boundary conditions to maintain the SBP property. For a nonlin-
ear symmetrizable system of conservation laws that contain time-dependent physical boundary

conditions, an extra complication arises, especially if a multistage Runge-Kutta method is used.
See Johansson [13] for a discussion.

4. Adaptive Numerical Dissipation Control

For smooth flows, entropy sp)litting does significantly improve the stability of the corImuta-

tion, but does not completely remove all nonlinear instabilities, especially for long-time wave
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propagations, computation of turbulent statistics, and spurious numerical solutions and spurious
oscillations due to under-resolved grids [29, 6]. Furthermore, the entropy splitting was developed
for smooth solutions. Additional difficulties from shock wave formation are the oscillatory behav-
ior of the centered difference interior scheme, and the fact that the nonconservative terms might
lead to inconsistent behavior at shocks/shears [31, 21, 23]. We propose to enhance the above
conditioning of the equations with an advanced numerical dissipation model, which includes
nonlinear sensors to detect shocks/shears and other small scale features, and spurious oscilla-
tion instability due to under-resolved grids. Furthermore, we will use the detector to switch off
the entropy splitting at shocks/shears and adjust the entropy splitting parameter with the aid of
local Mach number and Reynolds number in smooth region as discussed earlier. The advanced
numerical dissipation model can be used: (Option I) as part of the scheme, (Option II) as an
adaptive filter control after the completion of a full time step of the numerical integration or
(Option III) as a combination of Options I and II (e.g., high order nonlinear dissipation (with
sensor control) using Option I and nonlinear filter (with a different sensor control) using Option
II).

Due to space constraints, we concentrate here on an adaptive procedure that can distin-
guish three major computed flow features to signal the correct type and amount of numerical
dissipation needed in addition to controlling the entropy splitting parameter. The major flow
features and numerical instability are (a) shocks/shears , (b) turbulent fluctuations , and (c)
spurious high-frequency oscillations. The procedure can be extended if additional refinement or
classification of flow types and the required type of numerical dissipation is needed. There exist
different detection mechanisms in the literature for the above three features. These detectors
are not mutually exclusive and/or are too expensive for practical applications. We believe that
the multiresolution wavelet approach proposed in Sjbgreen & Yee [21] is capable of detecting all
of these flow features, resulting in three distinct sensors. If chosen properly, one multiresolution
wavelet basis function might be able to detect all three features. For an optimum choice, one
might have to use more than one type of wavelet basis functions but at the expense of an in-
crease in CPU requirements. Some incremental studies into the use of entropy splitting and the
application of these sensors were illustrated in [31, 21, 22, 24, 23, 16]. Here, additional tools are
illustrated together with highlights of some examples. An adaptive numerical dissipation model
illustrating some of the proposed ideas will be described in the next section. Full implementation
of the complete treatment of the numerical approach (including grid adaptation) discussed in
Section 1 to complex realistic multiscale problems is in progress.

5. Numerical Examples

This section illustrates the power of entropy splitting, the difference in performance of linear
and nonlinear (with sensor controls) filters and the combination of both types of filters with
adaptive sensor controls. We use the same notation as in [30, 31, 22]. The artificial compression
method (ACM) and wavelet filter schemes using a second-order nonlinear filter with sixth-order
spatial central interior scheme for both the inviscid anti viscous flux derivatives are. denoted by
ACM66 and WAV66. See [30, 31, 22] for the forms of these filter schemes. The same scheme
without filters is denoted by CENG6. The scheme using the fifth-order WEN() for the inviscid
flux derivatives and sixth-order central for viscous flux derivatives is denoted by WENO5. Com-
putations using the standard fourth-order Runge-Kutta temporal discretization are indicated
by appending the letters "RK4" as in CEN66-RK4. ACM66 and WAV66 use the Roe's average
state and the van Leer limiter for the nonlinear numerical dissipation portion of the filter. The
wavelet decomposition is applied in density and pressure, and the maximum wavelet coefficient
of the two components is used. The nonlinear numerical dissipation is switched on wherever the
wavelet analysis gives a Lipschitz exponent [21] less than 0.5. Increasing this umbuier will reduce
oscillations, at the price of reduced accuracy (see [21] for other possibilities). Computations
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Isentropic Vortex Evolution
(Horizontally Convecting Vortex, vortex strength A=5)

Freestream:

(--,,=,) = (1,0); p_ = p_ = 1
IC: Perturbations are added to the freestream (not In entropy)
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Computational Domain & Grid Size:

_< 2 <10 & -5< y <5

80 x 79 Uniform grid y..)

Periodic BC in a & y center of vortex

Figure 5.1. Vortex convection problem description.

using entropy splitting are indicated by appending the letters "ENT" as in WAV66-RK4-ENT.
Computations using an eighth-order linear dissipation filter are indicated by appending the let-
ters "D8" as ini WAV66-RK4-D8. In order not to introduce additional notation, inviscid flow
simulations are designated by the same notation, with the viscous terms not activated.

5.1. A 2-D VORTEX CONVECTION MODEL [30, 31, 21, 23]

The onset of nonlinear instability of long-time numerical integration, the benefit of the entropy
sjplitting and the difference in performance of linear and nonlinear numerical dissipations in
improving nonlinear stability for a horizontally convecting vortex (see Fig. 5.1) can be found in
in [30, 31, 21, 23]. We summarize the result here.

To show the onset of nonlinear instability, the 2-D perfect gas compressible Euler equations
are approximated by CEN66-RK4 with periodic boundary conditions imposed using a 80 x 79
grid with the time step At = 0.01. Since this is a pure convection problem, the vortex should
convect without any distortion if the numerical scheme is highly accurate and non-dissipative.
Although CEN66-RK4 is linearly stable, the test problem is nonlinear and instability eventually
sets in. Almost perfect vortex preservation is observed for up to 5 periods of integrations (5
times after the vortex has convected back to the same position - time = 50). Beyond 5 periods
the solution becomes oscillatory, and blows up before the completion of 6 periods. The blow
up is associated with an increase in entropy [23]. If we instead use the entropy-split form of
the approximation (CEN66-RK4-ENT) with a split parameter 0 = 1, almost perfect vortex
preservation for up to 40 periods can be obtained. The computation remains stable for up to 67
periods before it breaks down. The time history of the L 2 entropy norm and density contours
of the solution after 5, 10, 30 and 67 periods using CEN66-RK4-ENT is shown in Figs. 5.2 and
5.3. The norm is decreasing, although the instabilities break down the solution after 67 periods.
Using the second-order nonlinear filter without splitting (ACM66-RK4 or WAV66-RK4), the
solution remains stable beyond 67 periods. However, the numerical solution gradually starts
to diffuse after 20 periods. If we use the nonlinear filter in conjunction with entropy splitting
(ACM66-RK4-ENT or WAV66-RK4-ENT), almost perfect vortex preservation can be obtain for
up to 120 periods using a split parameter Q = 1 [31].
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Figure 5.2. Entropy norm history of CEN66-ENT: entropy split parameter I = 1 and 80 x 79 grid.
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Figure 5.3. Density Contours of CEN66-ENT: entropy split parameter )3 = 1 and 80 x 79 grid.

The density contours of the solution after 5, 10, 200 and 300 periods for the unsplit ()3 cc)

computation using the eighth-order linear dissipation (CEN66-RK4-D8) are shown in Fig. 5.4.
The linear dissipation term (-dh7 (D+D )4 Uj) with grid spacing h was added to the sixth-order
ba.se schem0e to discretize the convection terms. The parameter d is a given constant (d = 0.0002)
and is scaled with the spectral radius of the Jacobian of the flux function, and D+ and D_ are the
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Figure 5.4. Density contours of CEN66-RK4-D8 using 80 x 79 grid.

forward and backward difference operators, respectively. This numerical dissipation is applied
as part of the scheme and not as a post processing filter. The computation can be run for 300
periods without breakdown. However, serious degradation of accuracy occurs after 250 periods.
For this particular problem, the CEN66-RK4-D8 out performed the ACM66-RK4-ENT and
WAV66-RK4-ENT using /3 = 1. Perhaps using a higher than third-order nonlinear filter might

irnprove the performance of the ACM66-RK4-ENT and WAV66-RK4-ENT at the expense of an
increase in CPU.

5.2. DNS OF 3-D COMPRESSIBLE TURBULENT CHANNEL FLOW [19]

To obtain an accurate turbulent statistics, very long-time integration and highly accurate meth-
ods are required for this DNS computation. This numerical example illustrates the power of
entropy splitting. The comtputation employed time SBP-satisfyiug boundary difference opera-
tor with the fourth-order central interior scheme applied to the split form of the inviscid flux
derivatives CEN44-RK4-ENT with f3 = 4. The fluid mechanics of this 3-D wall bounded isother-
mal comp)ressible turbulent channel flow has been studied in some detail by Coleman et al.
[4]. They showed that the only compressibility effect at moderate Mach numbers comes from
the variation of fluid properties with temperature. They used a uniform body force term to
drive the flow, but recommended the constant pressure gradient approach which was adapted
by Sandham & Yee [19]. For simplicity, the fixed pressure gradient problem rather than the
constant mass flow problem was solved using fixed fluid properties. Thus only the wall shear
stress and masus flow rate vary durning the sinmlatiorn. A Mach iuumber of 0.1 is chosen, bas•ed

on friction velocity and sound speed corresponding to the fixed wall temperature. Channel half
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width h, friction velocity uT, wall temperature and bulk (integrated) density are the normalizing
quantities for non-dimensionalization with a Reynolds number of 180. Grid refinement studies
(three grids) were conducted and comparisons were made with results from incompressible flow
spectral method calculations using the same computational box size and the finest of the three
grids. Very good agreement was obtained. In addition, using the same uniform body force term,
computational box and grid size as in Coleman et al., excellent agreement was also obtained
with the Coleman et al. spectral compressible Navier-Stokes computation. What is interesting
is that this simulation did not require filtering, upwinding, or additional numerical dissipation
for shock free compressible turbulence computations. Moreover, this high order method can be
efficiently extended to general geometries [28]. Using CEN44-RK4-ENT ('3 = 4) together with
a so called Laplacian viscous term formulation, Sandham & Yee [191 demonstrated a robustness
down to very coarse resolutions, comparable with the best incompressible turbulent flow solvers
incorporating de-aliasing and skew-symmetric formulation of the convection terms. For the same
3-D problem, WENO5 is more than six times as expensive yet more diffusive than the present

scheme using the same temporal discretization. Without the use of the entropy splitting of the
inviscid flux derivatives and Laplacian right hand side formulation, using the same CFL number,
the CEN44-RK4 solutions diverge for all three grids before meaningful turbulence statistics can
be obtained. In view of the spurious high-frequency-oscillation-producing nonlinear instability
nature of central schemes and the past experience in incompressible turbulence simulations, in
the absence of entropy splitting and Laplacian formulation, the present calculations might not
even be possible with much higher resolution grid.

For the performance of ACM66-RK4, WAV66-RK4 and WENO5-RK4 on a spatially or a
time-developing mixing layer problem containing shock waves, see [31, 21].

5.3. MULTISCALE COMPLEX UNSTEADY VISCOUS COMPRESSIBLE FLOWS [22, 24]

Extensive grid convergence studies using WAV66-RK4 and ACM66-RK4 for two complex highly
unsteady viscous compressible flows are given in [22, 24]. The first flow is a 2-D complex viscous
shock/shear/lboundary-layer interaction. This is tie same problemi and flow conditions stuidied
in Daru & Tenaud [5]. The second flow is a supersonic viscous reacting flow concerning fuel
breakup. More accurate solutions were obtained with WAV66-RK4 and ACM66-RK4 than with
WENO5-RK4, which is nearly three times as expensive. To illustrate the performance of these
nonlinear filter schemes, the first model is considered. The ideal gas compressible full Navier-
Stokes equations with no slip BCs at the adiabatic walls axe used. The fluid is at rest in a 2-D
box 0 < x, y < 1. A membrane with a shock Mach number of 2.37 located at x = 1/2 separates
two different states of the gas. The dimensionless initial states are

PL = 120, PL = 120/,y; PR = 1.2, PR = 1.2/,y, (5.1)

where prPr. are the density and pressure respectively, to the left of x = 1/2, and PR,PR are
the same quantities to the right of x = 1/2. y = 1.4 and the Prandtl number is 0.73. The two
Reynolds numbers considered are 200 and 1000. The viscosity is assumed to be constant and
independent of temperature, so Sutherland's law is not used. The velocities and the normal
derivative of the temperature at the boundaries are set equal to zero. This is done by leaving the
value of the density obtained by the one sided difference scheme at the boundary unchanged,
and updating the energy at the boundary to make the temperature derivative equal to zero.

At time zero the membrane is removed and wave interaction occurs. An expansion wave and
a shock are formed initially. Then, a boundary layer is formed on the lower boundary behind the
right going waves. After reflection, the left going shock wave interacts with the newly formed
boundary layer, causing a number of vortices and lambda shocks near the boundary layer. Other
kinds of layers remain after the shock reflection near the right wall. The complexity of this highly
unsteady shock/shear/boundary-layer interactions increases as the Reynolds number increases.
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For illustration, here we show the difficult case of Reynolds number Re = 1000. The com-
putations stop at the dimensionless time 1 when the reflected shock wave has almost reached

the middle of the domain, x = 1/2. The numerical results discussed here are at time 1 with

uniform Cartesian grid spacings as described by Daru and Tenaud. Due to symmetry, only the

lower half of the domain is used in the computations; symmetry BCs are enforced at the bound-

ary y = 1/2. Figure 5.5 shows the comparison of a second-order MUSCL using a second-order

Runge-Kutta method (MUSCL-RK2) with WAV66-RK4, ACM66-RK4 and WENO5-RK4 using

a 1000 x 500 grid. Comparing with the converged solution of WAV66-RK4 and ACM66-RK4

using 3000 x 1500 (see bottom of figure) and 4000 x 2000 grids (see [22]), one can conclude

that WAV66-RK4 exhibits the most accurate result among the 1000 x 500 grid computations.
We note that, for this Reynolds number, the unsteady problem is extremely stiff, requiring very

small time steps and very long-time integrations before reaching the dimensionless time of 1.

5.4. AN ADAPTIVE NUMERICAL DISSIPATION MODEL FOR 1-D SHOCK-TURBULENCE
INTERACTIONS

In classical CFD codes, a second order accurate base method is used together with two con-

stant strength linear numerical dissipation terms. One linear fourth-order dissipation is used
everywhere except near shocks/shears/steep)-gradients to remove nonlinear instabilities. It does

not affect the second order accuracy of the base scheme. The second dissipation term is a

second-order linear dissipation, which affects the order of accuracy, but is only switched on near

discontinuities, and/or steep unresolved gradients using a gradient sensor. The sensor used can-

not distinguish the different flow features distinctly and is not accurate enough for turbulent

statistics and long-time acoustic computations, unless extreme grid refinement is employed.

In analogy with the aforementioned classical methods, a more advanced numerical dissipation

model with improved flow feature extraction sensors for high order central schemes is proposed.
Here, we consider a dissipation model with two parts. One part is a nonlinear filter ([30]) and the

second part is a high order linear numerical dissipation term modified at boundaries to become
a semi-bounded operator, see [20, 23]. The wavelet dissipation control sensor developed in [21]

is used as the flow feature detector. The sensor is computed from the wavelet estimate of the

Lipschitz exponent ce of the density and pressure in the flow field. Below we present a filter

model for 1-D shock/turbulence interactions.

A Filter Model: Using a suitable wavelet basis function, the final result of the wavelet com-

putation is a quantity, B,, which is near zero at points xj where the solution is smooth and near
one where the solution is discontinuous. Sj depends on the Lipschitz regularity exponent of the
solution. We define the filter numerical flux of the numerical dissipation operator as Hal-12'

HqI/2 = max(Sj, SjI)F_ 1/2 + dj[1 - max(Sj, Sji)](h6 D+(D+D_)3Uj, (5.2)

where Fj*_/ 2 is the flux function corresponding to the dissipative portion of a shock-capturing

scheme (e.g., second order accurate TVD scheme) [30]. The first part of the filter stabilizes
the scheme at shock/shear locations. The second part is an eighth-order filter which improves

nonlinear stability away from shock/shear locations. Analogous eighth-order filters can be used
if a sixth-order compact spatial base scheme is used [7, 27]. We switch on the high order part of

the filter when we switch off the nonlinear filter. The physical quantity (e.g., local Mach mmnber)
can be used to determine the dj I)araTneter of this high order dissipation terim.

To further increase stability properties, it is possible to use the sensor to switch on and off

the entropy splitting and adjust the value of the entropy splitting parameter according to flow
type and region. For this problem, however, we believe a constant /3 = 1 away from the shock

waves is sufficient. After the completion of a full time step computation using the sixth-order
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a• satisfying sup If(x + h) - f <(x)l < C, 
(5.4)

h0O ha

and this gives information about the regularity of the function f where small a means poor
regularity. For a C1 wavelet function 0 with compact support, a can be estimated from the
wavelet coefficients, defined as

w,,,,j =< f, '4rn,j > f f(x)0.j(-)d-, (5.5)

where

0,,,,j =2'0 X j (5.6)

is the wavelet function ¢,,j on scale in located at the point j in space. This definition gives a so

called redundant wavelet, which gives (under a few technical assumptions on V) a non-orthogonal
basis for L2 . It is possible to prove that the coefficients maxj IWm,jI in a neighborhood of jo decay

as 21' as the scale is refined, where a is the Lipschitz exponent at jo. In practical computation,
we have a smallest scale, determined by the grid size. We evaluate w,,,j on this scale, m0, and

a few coarser scales, m 0 + 1, m 0 + 2, and estimate the Lipschitz exponent at the point Jo by a

least square fit to the line [21]

mnax log 2 Iw,,JI = rnamj + c. (5.7)
j near j0

For the numerical experiments, the wavelet coefficient Wm,j is computed numerically by a re-

cursive procedure, which is a second-order B-spline wavelet or a modification of Harten's multi-
resolution scheme [21]. The sensor we use in the computations is

S) = T(aj), (5.8)

where1

T(aj) 1 a= <0.5 (5.9)
0 aj > 0.5.

The dissipative model (5.2) is used to solve a simple, yet difficult, 1-D compressible inviscid
shock-turbulence interaction problem with initial data consisting of a shock propagating into an

oscillatory density. The initial data are given by

(pL, UL, Pr) = (3.857143, 2.629369, 10.33333) (5.10)

to the left of a shock located at x = -4, and

(PR, uRj, PR) = (1 + 0.2 * sin(5 * x), 0, 1) (5.11)

to the right of the shock where u is the velocity. Fig. 6.6 show the comparison between a

second-order MUSCL-RK2 with a sixth-order central scheme and the aforementioned numerical
dissipation model using RK4 as the time discretization (WAV66-RK4-D8). The parameter d =

0.002 is scaled with the spectral radius of the Jacobian of the fhix function. Note that the eighth-
order dissipation is a filter, and is different from the CEN66-D8 used in Section 5.1 where the

dissipation is part of the scheme. Solution using a second-order uniformly non-oscillatory (UNO)

scheme on a 4000 uniform grid is used as the reference solution (solid lines on the first three sub-

figures). The bottom of the right figures show the density and Lipschitz exponent distribution
for the. WAV66-RK4-D8 using 400 grid points. Comparing our result with the most accurate

computation found in the literature for this problem, the current approach is highly efficient



378 H. C. YEE AND B. SJOGREEN

and accurate using only 800 grid points without grid adaptation or very high order shock-
capturing scheme. For the present computation, the WAV66-RK4-D8 consumed only slightly
more CPU than the second-order scheme MUSCL-RK2. With the eighth-order dissipation filter
turned off (i.e., only the nonlinear filter remains - WAV66-RK4), the computation is not very
stable unless a finer grid and smaller time step is used. Turning on the entropy splitting away
from the shocks helps to reduce the amount of the eighth-order dissipation coefficient [33].

6. Concluding Remarks

A general framework for the design of an adaptive low dissipative high order scheme is pre-
sented. The approach is applicable to a wide spectrum of flow problems. However the demand
on the overall numerical approach for nonlinear stability and accuracy is much more stringent
for long-time integration of complex multiscale shock/shear/turbulence/acoustics interactions
and numerical combustion problems. Robust classical numerical methods for less complex flow
physics arc not suitable or practical for such applications. The present approach is designed
expressly to address such flow problems and computational challenges. The incremental stud-
ies to illustrate the performance of the approach are summarized. Extensive testing and full
imlplementation of the approach is forthcoming. The results shown so far are very encouraging.
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