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Abstract. We have focused upon the development and validation of finite
element methods for LES of turbulent flows in settings in which interac-
tion with (possibly geometrically complex) boundaries are important. New
results are presented in Section 2 on closure and convolution on bounded
domains. Similarly, new near wall models were required; our method for
developing these is described and one from our work is presented in Section
3. The difficulties in closure and wall modelling suggest a second approach:
direct simulation of large eddy motion. We give an extension of this ap-
proach to nonlinear, equilibrium flows - a step closer to turbulence for an
approach not requiring wall models or closure models.

1. Introduction

There is a natural interplay between Finite Element CFD and LES for top-
ics such as: closure models, near wall models, and FEM postprocessing by
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local averaging. Because of their geometric flexibility and their flexibility
with respect to continuum models and linear or nonlinear boundary condi-
tions, FEM’s are a natural discretization in the LES of flows with complex
boundaries. Adaptivity, highly developed for FEM’s, has interesting po-
tential for LES without modelling error. For example, using extensions of
work in (John and Layton, 2001) reported in Section 4, a CFD mesh can
be designed so that local averages of an inaccurate approximate flow field
approximate the true local velocity averages with assured accuracy.

This paper surveys some of our work developing a mathematical foun-
dation for finite element LES and presents some new results and extensions
of this work. Many of the reports cited herein are available at
http://www.math.pitt.edu/~wjl.

Consider therefore the turbulent flow of an incompressible fluid in three
dimensions, bounded by walls and driven by a body force f(z,t). The
velocity-pressure (u, p) satisfy the Navier Stokes equations, given by:

ug + div(uu) — 2Re~div (D(u)) + gradp = f(z,t), and divu =0, (1)
in a domain Q complemented by boundary and initial conditions
u = 0 on walls, and u(z,0) = up(z),

where D(u) = (grad u+ grad %)/2 is the velocity deformation tensor. Pick-
ing a length scale § and an associated averaging kernel gs(z) := d~3g(z/9),
where g(z) is a mollifier satisfying certain properties, local velocity and
pressure averages are frequently defined by convolution with g(z),7 :=
gs * u,P := gs * p, etc., where all functions are, when necessary, extended
by 0 off the flow domain to compute the required average.

For compactness, we will only discuss herein the case of constant aver-
aging radius 4. Alternate approaches include a variational definition of the
large eddies (Layton, 1999), (Hughes et al., 2001), and differential filters,
introduced by Germano in the 1980’s, wherein (in effect) § = §(z) — 0
as r approaches walls in a manner intrinsic to the NSE and the domain’s
geometry, (Layton and Lewandowski, 2001).

2. Convolution on Bounded Domains and Closure

With constant averaging radius, 4, convolution operators commute with
differential operators in the absence of boundaries. With boundaries, extra
terms arise which are often overlooked. For example, filtering (1) with gs(z)
on a bounded domain gives the following space filtered equations for @ :=
gs * u, P := g5 * p (see (Dunca et al., 2001))

U + div(T @) — 2Re” div(D(@)) + gradp + div(T(u)) = f + 45(0), (2)
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where o is the stress of the unknown flow and T(u) := Twu — @ @ is the
Reynolds stress tensor. A direct calculation in (Dunca et al., 2001) using
the theory of distributions reveals that

As(o) = /g(g(:c —s)(o-A)(s)ds, o :=2Re 'D(u) — pl,
N

which can be interpreted as a boundary stress distribution smeared out, onto
the entire flow domain. Since the As(c) term in (2) is normally neglected,
it might be hoped to be negligible. Unfortunately, this is not the case, as is
seen in the following result, (Dunca et al., 2001).

Proposition. Let ||w||r» := ([ |w|Pdz)}/P,1 < p < co denote the usual LP
R3
norm, 1 < p < 00 and ||w|{L~ :=esssup |w|. Then for 1 <p < oo
z€R3

||A5||Lp —0aséd—0.

if and only if the normal stress is identically zero on the boundary of the
flow domain
o-n =0 on the boundary. O

The proof of this result is moderately technical but the importance
of the result is clear: the term Ajs(o) cannot be omitted if the boundary
influences the flow!

It is well-known that (2) are not closed for periodic problems due (only)
to the Reynolds stress tensor T(u) and numerous LES models have been de-
veloped to model T(u), see, e.g., (Iliescu and Layton, 1998), (Berselli et al.,
2001), (Layton, 2000), (Galdi and Layton, 1999), (Layton and Lewandowski,
2001) for our work on closure. For flows with real walls or other boundaries,
(2) are not closed due to both T(u) and the “smeared” wall stress oper-
ator As(c). More detailed understanding of As(o) is necessary to model
correctly the interaction of large eddies with walls; see (Dunca et al., 2001)
for first steps.

3. Near Wall Models: Boundary Conditions for LES

Either modeling or omitting the smeared wall stress term As(-), boundary
conditions are still required for the large eddies @ and simply imposing
u = 0 at walls is inconsistent, see (Galdi and Layton, 1999), Figure 1. This
inconsistency is intuitively clear: a tornado, as an example of a large eddy,
does move/slip along the ground.
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What are then the correct boundary conditions? Motivated by this ex-
ample of a tornado, we have explored no-penetration and slip-with-friction
conditions (see, e.g., (Navier, 1823) and (Maxwell, 1879) for antecedents)
for u:

u-fi=0and G ©- 7 + t(@) - 7 = 0 on walls, (3)

where 71,71, 72 are unit normal and tangent vectors to the wall (Layton,
2001), and ¢ is the Cauchy stress or traction vector. The effective friction
coefficient 5 for the large eddies is calculated explicitly in (Sahin, 2000)
and (John et al., 2001)

B = B(d, Re) or B = P(6,|a-7|) : large eddy friction coeficient.

The conditions (3) thus allow both linear and nonlinear near wall models.
For turbulent channel flow, the linear model, based on a global Reynolds
number, seems to suffice. However, for flows in complex geometries, the
local Reynolds number, related to the slip velocity |u - #;|, varies greatly
from recirculation zones to mean stream regions. Thus, the nonlinear model
seems necessary.

The friction laws in (Sahin, 2000), (John et al., 2001) are calculated
using boundary layer theory, with different results for different types of
turbulent layers. For example, for a power law layer the linear wall model’s
effective friction coefficient is as follows. Let I'[:] denote the usual gamma
function and I'[-,] the incomplete gamma function, = 0.21Re™! and

Z:=n/b

. Re-1zV/7[7T 21 - 3T, 22
IB( ,77) - 2\/7?62[Z1/7{F[%] — F[%, Z2]} -+ \/77(1 - erf(Z))] .

A very good (and simple) approximation is given (to 4 decimal places) by
the effective friction coefficient:

B(6, Re) = Re™16721.22¢70-008/Z (4)

From this simple formula we see that:

— As § — 0, for fixed Re, the friction § — oo, i.e., the boundary condi-
tions (3) reduce to no slip.

— As Re — oo for fixed &, the friction coefficient 8 — 0, i.e., the boundary
conditions (3) reduce to free-slip and no-penetration, as appropriate for
the Euler equations.

To explain the nonlinear friction laws we note that for a power law
layer (and other profiles as well), the slip speed, s := /[u- 71|2 + [u - fo|2
is a monotone increasing function of Re for § fixed. Expressing this as
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s = g(Re),¢'(Re) > 0 implies that the inverse function g*(-) of g(-) exists.
We can then write Re = g¢*(s). Inserting this inverted relation into (4)
yields nonlinear friction laws:

:8]' (5, g*(lrd ) 7“-]')) o 1.225——29*““ . fjl)e-—0.00QO/g*(lﬂ-ij_

This program can be carried out for different types of turbulent boundary
layer profiles, see (John et al., 2001) for detailed formulas.

4. Numerical Errors in LES

With closure models and boundary conditions selected, convergence of a
chosen numerical method to the model’s solution must be considered, e.g.
(John and Layton, 2000), (Iliescu et al., 2000), (Layton, 1996). For example,
in (John and Layton, 2000) convergence for a FEM discretization of the
Smagorinsky model is proven to be uniform in Re, as is often reported in
practical simulations but hitherto unproven. This work does not address
the modelling error itself however.

In recent work, we have devised new algorithms which give computable
bounds on both the modelling and the numerical errors, (John and Layton,
2000). This work was begun in (John and Layton, 2001) for (linear) Stokes
flow. Our current work, reported in this section, has extended those new
methods to the (nonlinear) equilibrium NSE - a step closer to the true
problem.

The approach is simple to describe: the fluid velocity is directly ap-
proximated and then postprocessed by local averaging, giving g5 * u” as an
approximation to & = g5 * u. One key is that the finite element mesh is
adapted within the calculation so that g; * u" approzimates T with assured
accuracy, even when u” is a bad approximation to u. The second key is that
the averaging radius é must be taken smaller than the local meshwidth of
the refined mesh, § << O(h). These new a posteriori estimators are given
in (John and Layton, 2000) (and a new report in preparation). With these
new estimators, the error is also concentrated in high frequencies and killed
by postprocessing. Thus, the error in the large eddies is typically far smaller
than the overall error, as in the following theorem.

Theorem. Let the equilibrium NSE be solved by the FEM with finite ele-
ment spaces satisfying the usual stability and local-polynomsial degree k ap-
prozimation conditions. Let the NSE solution be nonsingular with linearized
dual H*-regular. Then, the error in the large eddies ||gs * ut — |2 is
related to (and much smaller than), the error in the velocity (||V (u—u)]|)
and pressure (||p — p"||) by, for any € > 0:

los et~z < o (re 4 V) () 19—
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+ (g)k 6 (Ilp = p"lze + 1V - (u = w2 )

h k
+ (E) 51V (u — uP)|[22 + 67| ju — uhll%z}- O

This theorem also gives analytical guidance for relating § and h. How-
ever, the related mesh-adaptation strategy is the most important practical
contribution of this theory.
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