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Abstract. The "velocity filtered density function" (VFDF) methodology
is employed for large eddy simulation (LES) of a three-dimensional, tempo-
rally developing, turbulent mixing layer. A transport equation is derived for
the VFDF in which the effects of the subgrid scale (SGS) convection appear
in closed form. The unclosed terms in this equation are modeled. A system
of stochastic differential equations (SDEs) which yields statistically equiv-
alent results to the modeled VFDF transport equation is proposed. These
SDEs are solved numerically by a Lagrangian Monte Carlo procedure. The
VFDF results are compared with those obtained via several existing SGS
closures and with data obtained by direct numerical simulation (DNS) of
the mixing layer.

1. Introduction

The probability density function (PDF) approach has proven useful for
large eddy simulation (LES) of turbulent reacting flows (Pope, 2000; Poinsot
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328 L.Y.M. GICQUEL ET AL.

and Veynante, 2001). The formal means of conducting such LES is by con-
sideration of the "filtered density function" (FDF) which is essentially the
filtered fine-grained PDF of the transport quantities (Pope, 1990). In all
previous contributions, the FDF of the "scalar" quantities is considered
(Pope, 1990; Gao and O'Brien, 1993; Colucci et al., 1998; RBveillon and
Vervisch, 1998; Garrick et al., 1999; Jaberi et al., 1999; James and Jaberi,
2000; Zhou and Pereira, 2000; Tong, 2001). The objective of the present
work is to extend the methodology for LES of the velocity field.

2. Formulation

We consider a constant (unit) density, three-dimensional temporally devel-
oping mixing layer. The primary transport variables are the velocity vector,
ui(x, t) (i = 1, 2, 3), and the pressure, p(x, t), field. Large eddy simulation
involves the spatial filtering operation (Guerts, 2001; Sagaut, 2001)

Uf(X,t)L = L f(X',t)G(x' - x)dx', (1)

where G(x) denotes a spatially and temporally invariant, localized and
positive filter function (Vreman et al., 1994) of length AL, and f(x, t))L
represents the filtered value of the transport variable f(x, t). The appli-
cation of the filtering operation to the instantaneous equations describing
transport of the variables in space and time (t) yields

C9 (ui)L
xi 0,

8 (uj)L "1-O•(i)L(Uj)L _ i(P)L + O(0ij)L _
9
7TL(Ui,U 1 ) (2)

&t + xi - aj a xi axi
For a Newtonian fluid the viscous stress tensor aij is represented by aij =.

-"u' + o'i ), with v denoting the (constant) kinematic viscosity. The term

TL(ui, uj) = (Uiuj)L- (Ui)L(Uj)L denotes the generalized SGS stresses (Ger-
mano, 1992). The "velocity filtered density function" (VFDF), denoted by
PL, is formally defined as (Pope, 1990)

f+00PL (V; x, t) = j p [v, u(x', t) ] G(x' - x)dx',

3 (3)
S[v,U(x, t)] = [vi -U1 (xt01,

where 6 denotes the delta function and-v is the velocity state vector. The
term o[v, u(x, t)] is the "fine-grained" density (O'Brien, 1980; Pope, 1985;
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Pope, 2000), and Eq. (3) defines the VFDF as the spatially filtered value of
this density. With the condition of a positive filter kernel (Vreman et al.,
1994), PL has all the properties of the PDF (Pope, 1985). The transport

equation for the VFDF is obtained by applying the filter to the equation
governing the evolution of fine-grained density (Gicquel, 2001). The effects
of SGS convection in physical space appear in a closed form in this equation.
However, the convective effects in the velocity space due to SGS pressure
gradient and SGS diffusion need to be modeled. For closure of these terms,
the generalized Langevin model (GLM) (Haworth and Pope, 1986; Pope,
1994) is employed,

DPL - [(Vk - (Uk)L)PL] + O1(P)L vPL (tik)L 9PL
dDj Y 6 9i4v Xk 09Vi 4~0 ( /)1 O2PL()

--a [ G ij (vj - (U j )L ) P L ± + 1 C o E a±22- - - -- )

D v 2 09i0v

where D + (Uk)L 8., and the two terms Gij and e jointly represent

the SGS pressure-strain and SGS dissipation,

Gij = -w + 2-Co) ij, = CQ k 3/ 2 /AL, w = E/k. (5)

In this model w is the SGS mixing frequency, k = ½rL(ui,ui) is the SGS
kinetic energy, and e is the SGS dissipation rate. In Reynolds averaged

simulations, typically CQ ;-. 1, and Co ;z 2.1.
In addition to VFDF, three other LES are conducted with (1) no SGS

model, (2) the Smagorinsky SGS closure (Smagorinsky, 1963), and (3) the
dynamic Smagorinsky (Germano et al., 1991; Germano, 1992; Lilly, 1992)
model. The no model refers to the case in which the contribution of the

SGS is completely ignored, i.e. -rL(ui, uj) = 0.

3. Numerical Solution Procedure

The solution of the VFDF transport equation provides all the statistical
information pertaining to the velocity vector. The most convenient means
of solving this equation is via the Lagrangian Monte Carlo scheme (Pope,
1985; Pope, 1994). To do so, the general diffusion process is considered via

the following system of stochastic differential equations (SDEs) (Pope, 1985;
Haworth and Pope, 1986),

dU(t) = [(O x) + (~kL + Gij (Uj(t) - (uj)L)] dt + Vc e d Wi"(t)

dXi(t) = Ui (t) dt, (6)
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where Xi and Ui are probabilistic representations of the position and the
velocity, respectively; and Wi" denotes independent Wiener-L6vy processes
(Karlin and Taylor, 1981). The corresponding Fokker-Planck equation for
this diffusion process is the same as the VFDF transport equation. With the
Lagrangian description, the VFDF is represented by an ensemble of Monte
Carlo particles. Each of these particles carries information pertaining to its
velocity and position. This information is updated via temporal integration
of Eq. (6). The statistics are evaluated by consideration of the ensemble of
particles in a "finite volume" centered at a spatial location. This finite
volume is characterized by a cubic box of length AE containing NE Monte
Carlo particles.

The "mean field solver" is based on the "compact parameter" finite
difference scheme (Carpenter, 1990) with a fourth order spatial accuracy
and a second order symmetric predictor-corrector sequence for time dis-
cretization. All the finite difference operations are conducted on fixed and
equally sized grid points with spacings A. The transfer of information from
these points to the location of the Lagrangian particles is conducted via
interpolation. The mean-field solver also determines the filtered velocity
field. That is, there is a "redundancy" in the determination of the first fil-
tered moments as both the finite difference and the Monte Carlo procedures
provides the solution of this field. This redundancy is actually very useful
in monitoring the accuracy of the simulated results (Jaberi et al., 1999;
Muradoglu et al., 1999). The DNS and all the other LES (via the no-model,
Smagorinsky, and the dynamics Smagorinsky) are conducted with the same
finite-difference scheme.

4. Results

Simulations axe conducted of a three-dimensional (3D) temporally devel-
oping mixing layer. This layer consists of two parallel streams traveling
in opposite directions with the same speed (Moser and Rogers, 1992). A
hyperbolic tangent profile is utilized to assign the velocity distribution at
the initial time. The coordinates x, y, z denote the streamwise, cross-stream,
and spanwise directions, respectively. The flowfield is initialized with a pro-
cedure somewhat similar to that considered previously (Vreman et al., 1997)
which results in the formation of two successive vortex pairings and strong
three-dimensionality. Simulations are conducted on 1933 and 333 points for
DNS and LES, respectively. For filter, a top-hat function of width AL = 2A
is used. No attempt is made to investigate the sensitivity of the results to
the filter function (Vreman et al., 1994) or the size of the filter. Simulations
are conducted with CQ = 1, Co = 2.1, AE = A/2, NE = 40, and with a
uniform "weight" (Pope, 1985) of the Monte Carlo particles.
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Figures 1 and 2 show the contours of the spanwise and the stream-
wise components of the vorticity field, respectively. By this time, the flow
has gone through several pairings and exhibits strong 3D effects. This is
evident by the formation of large scale spanwise rollers with presence of
counter-rotating streamwise vortex pairs in all the simulations. The results
via the no-model indicate too many small-scale structures which clearly
are not captured accurately on the coarse grid. The amount of SGS diffu-
sion with the Smagorinsky model is very significant at initial times. Due to

this dissipative characteristics of the model, the predicted results are too
smooth and only contain the large scale structures. The vortical structures
as depicted by the dynamic Smagorinsky and the VFDF are very similar
and predict the DNS results better than the other two models. But both
models yield less fine structures as compared to DNS. The Reynolds aver-
aged values of the simulated data (not shown) also indicate the dissipative
nature of the Smagorinsky model resulting in a slow growth of the layer.
As a result, this model does not predict the spread and the peak value of
the resolved Reynolds stresses. The VFDF predicts both the spread and
the peak values reasonably well, except for small C, values. In this-case,
the amount of energy in the resolved scale decreases too much in favor of
the increase of the SGS stress.
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Figure 1. Contour plots of the spanwise component of the vorticity. (a) Filtered DNS,
(b) no model, (c), Smagorinsky model, (d) dynamic Smagorinsky model, (e) VFDF.
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Figure 2. Contour plots of the streamwise component of the vorticity vector. (a) Filtered
DNS, (b) no model, (c) Smagorinsky model, (d) dynamic Smagorinsky model, (e) VFDF.


