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A DYNAMIC PROCEDURE FOR CALCULATING THE
TURBULENT KINETIC ENERGY

B. KNAEPEN, 0. DEBLIQUY AND D. CARATI
Universt6 Libre de Bruxelles, Boulevard du Triomphe, Campus
Plaine - CP.231, 1050 Brussels, Belgium

Abstract. We propose a dynamic model based on the Germano identities
to evaluate the subgrid scale energy <k> in LES as a function of the large
scale velocity field only. Contrary to traditional transport equation for k,
this model does not require any additional equation and provide a very
simple first approximation for k.

1. Introduction

The aim of LES is to make predictions about turbulent flows which are not
accessible by DNS. Therefore, it is important to establish correspondence
rules between the physical quantities predicted by LES and their actual
measured values. These correspondence rules are also useful when assess-
ing the performance of LES subgrid models through the comparison with
resolved DNS, although in that context it may be possible to filter the DNS
fields down to the LES scales to produce the desired comparison.

A detailed discussion of how to establish these correspondence rules can
be found in (Winckelmans et al, 2001). Here we focus our attention to one
of most fundamental one: the relation between the total energy (density) of
the turbulent fluid and the resolved LES energy density. It can be written
as,

E = ER + Ess, (1)

where E denotes the total energy, ER the resolved LES energy and Esg, is
the subgrid-scale energy. This last quantity is traditionally not available in
LES and thus needs to be reconstructed to evaluate the total energy density
from the LES energy density. As shown in (Winckelmans et al, 2001), E8 g,
is also required to reconstruct the full Reynolds stress tensor.
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In order to calculate E8 g,, a transport equation can be introduced. Al-
though quite effective (Debliquy et al, 2001), this method has however two
side effects. First, to close the transport equation in terms of filtered quanti-
ties, one needs further modelling efforts. Second, the resolution of the extra
equation increases the computation requirements.

In this paper, we propose a different approach and show how an estimate
of the subgrid scale energy E8 _, can be obtained using the Germano identi-
ties and a model for the energy spectrum. We also produce some numerical
results to illustrate the method.

2. Modelling the turbulent kinetic energy

For an incompressible, Boussinesq flow, the Navier-Stokes equations for the
LES field Ui read,

at i + 9( ) = 9 p + vU - jij. (2)

One of the essential difficulty of LES consist in modelling the unknown
subgrid-scale stress tensor Tij = uiuj - uiuj which appears in the fil-
tered Navier-Stokes equations. Note that since our numerical code is fully
dealiased we have, for consistency, expressed (2) only in terms of filtered
quantities, including Tij.

Like any second-order symmetric tensor, fij may be decomposed into
an isotropic part and a trace-free part:

2-5 -
T-j = kij + i, (3)

where Ti*j = Tij - Trrij and

1•Trr(4-1
k (4)U-

2 i - (5)

Traditionally, k is known in the literature as the turbulent kinetic en-
ergy. However, this name might be misleading and one must be careful
about the interpretation of k. To be more precise, let us denote by ui the
non-filtered velocity and by ui the subgrid scale part of ui. We then have

-U + uý and we can define three local energy densities: 1) e = uiui; 2)1• -- 1i n" I

eR -U-h; 3) 1 = l At this stage, it might be tempting to identify
the turbulent kinetic energy k with -gs. However, only their space average
are identical. Indeed, locally we have:

k = + (6)
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Therefore, k does not represent the local contribution of the small scales to
the energy budget. To add to this, we also recall that k is in general not
even positive definite for arbitrary grid filters (e.g. projectors).

Usually, modelling k is not an issue in the case of incompressible LES
since one can define a modified pressure, += J ± 2 which is obtained by
enforcing the continuity condition Oigi = 0. However, this does not apply to
the compressible case and as we exposed in the introduction, the knowledge
of < k > might be very useful for real flow predictions and comparison with
DNS.

To proceed, we follow the steps of (Germano et al, 1991) and introduce
a second coarser filter called the test-filter which we denote by • * .. In the
sequel all the filters considered will be sharp Fourier cut-offs. Therefore,
the "grid+test" filter, denoted :: is equivalent to the test-filter: =

- AThe filtered velocity iii then satisfies the following equation:

atiii + 9(3i - j) = -9J5 + VLi - 093j, (7)

where Tij =_ ui- -i7P7j is the subgrid-scale stress tensor at the combined

grid+test filter level. The Germano identity states that Tij and Fij are
related by,

L = Tj- Fj, (8)

where,

uuj = •U - uiu, (9)

is the Leonard tensor.
For any quantity we have the following property,

< F >=< P >=< P >, (10)

where the bracket < ... > denotes space average: < F >= i fd3xF(x).
Indeed, for any filter G(y) (.) we have f d3 yG(y) =1 so that:

<F- f f dx-F(x) (11)

- fd 3d fdd3yG(x -y)F(y) (12)

- f d3 yF(y) fd 3zG(z) (13)

- f dd3xF(x) =< F > (14)

where we have used the change of variable: z = x - y.
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E(k)

kc k -k

Figure 1. Space average of Leonard tensor. k, and kI denote respectively the cut-offs
at grid and grid-and-test levels.

Using property (10) and the trace of equation (9) we get the relation,

< Lij >=< 7 if > - < i >, (15)

which states that the space average of the Leonard tensor is equal to twice
the difference of the energy at grid level and grid+test level. Another way
of getting this relation is by taking the trace of (8). Denoting by K the
turbulent kinetic energy density at grid+test level, we obtain, < Lii > =
2(< K> - < k >), which has of course the same interpretation. Figure 1
illustrates the situation.

The above considerations allow us to write,

kc
< Lii >= 2 E(k)dk, (16)

where k, and kc denote respectively the cut-offs at grid and grid+test levels.
The energy spectra E(k) is defined so that, E = fo E(k)dk.

The next step in the analysis is to introduce a model for the energy
spectra. To begin with, let us suppose that kc and k, lie in the inertial

range which is assumed to be represented by E(k) = CK f2/3k-• where
CK is the Kolmogorov constant and E is the global dissipation which is

usually not known in LES simulations. We propose here to estimate CK E3
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by substituting E(k) in (16). After straightforward algebra one gets:

2 < Li>

CK6c3= _ 2 (17)
3(kc 3 - kI 3)

If we now extend the inertial range to infinity (which is the main approxi-
mation so far) we finally get a dynamic expression for the mean turbulent
kinetic energy:

< k > J E(k)dk (18)

< Lii > (19)
_ -12(9

< > -(20)
2 (,&• 1)

where L and A denote respectively the width of the grid and grid+test
filters. The last equation is written to stress that the model is also suited
to the physical formulation approach. Indeed, we only used spectral con-
siderations to establish the model but the final result does not require the
spectral formulation. We stress that the expressions (19) and (20) are in-
deed dynamic since they can be evaluated during the simulation. Usually
they do not represent any further computational effort since Lii is often
already required by dynamic eddy-viscosity models.

In the next section we present some results based on our estimate of

3. Numerical results

To test model (19), we have build a 2563 DNS database of isotropic decaying
turbulence. The initial condition is build according to Rogallo's prescrip-
tion (Rogallo, 1981) using the spectra of the Comte-lBellot-Corrsin (Comte-
Bellot and Corrsin, 1971) experiment at stage 2. The initial random phases
of the velocity fields are correlated by time-stepping 100 times the flow and
maintaining the spectra constant.

The initial condition of the DNS has then been filtered down to 32'
modes and two kind of LES have been performed. The first one is denoted
LES/KOL. It is based on an eddy-viscosity model with Kolmnogorov scal-

!-I-- - 1
ing: Tj = -2CE3A 3 SiJ, where Sij = ½(OijU + Ojii); the constant C is
evaluated using the dynamic procedure. The second LES run is denoted
LES/Transport. It is also based an eddy-viscosity model but this time, the
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Figure 2. Filtered energy and average turbulent kinetic energy decays.

-1

viscosity is scaled with the turbulent kinetic energy: Tý = -2Ck _ASij,
where the constant C is also evaluated using the dynamic procedure and
k+ = k for k > 0 and k = 0 otherwise. The essential difference is that
here T is not evaluated using the diagnostic (19) but is simulated using the
transport equation due to Speziale (Speziale, 1991); the details of this LES
simulation can be found in (Debliquy et al, 2001). For completeness, we
have also performed a 323 unresolved DNS to emphasize the roles of the
LES models.

In Figure 2 we plot 1) the energy decay of the 323 modes resolved by the
LES (ER =< eR > in the terminology described above) for the different
models used; 2) the subgrid-scale energies predicted by model (19) (dynamic
TKE) and by the turbulent kinetic transport equation (transport TKE).
From the graph we observe a good agreement between the filtered DNS and
the two LES which produce very similar results for the resolved energy. The
importance of the subgrid-scale models is stressed by the "No Model curve".
The average turbulent kinetic energies predicted by the two LES models
are quite different initially but tend to get closer to each other later.

In Figure 3 we plot the decay of the total energy. For the two LES,
the curves correspond to the sum of the resolved energies and the average
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Figure 3. Reconstruction of total DNS energy.

turbulent kinetic energies presented in Figure 2. Initially, model (19) tend
to overestimate quite seriously the subgrid scale energy. Later, the behavior
is much more satisfactory and even slightly better than than the one of the

LES/Transport model. The initial precise match between the DNS and the
LES/Transport model is of course natural since the initial condition for k is
in that case computed from the DNS. The test for model (19) is thus much
more severe. The initial overestimate of k by model (19) may be due to two
causes. The first one is the choice of the model for the energy spectrum.

Indeed, the resolution of our DNS does not allow a clear inertial range
and extending the later to infinity may be a crude oversimplification. The
second source of error might come from the dynamic procedure itself. It has
been observed already that this procedure takes some time to settle and
predict appropriate values. This is probably due to the fact that a filtered
DNS field is badly correlated as an initial condition for an LES. Bearing
these in mind, the prediction of model (19) are nevertheless satisfactory and
show that the expression for <k> is a useful first approximation when no
DNS is available, and if we want to avoid an additional transport equation
for k.
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4. Summary and conclusion

In this article we have derived a dynamic expression to estimate the subgrid
scale energy Esgs of a turbulent flow from the resolved LES scales. The
knowledge of Esg, can then be used to reconstruct the complete Reynolds
stress and in particular the total energy from the LES field.

We have presented numerical result which indicate that the estimate
we propose for Eg8 , is satisfactory and rivals the performance of a direct
evaluation obtained from a transport equation.
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