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1. Introduction

The equations for Large-Eddy Simulation (LES) of turbulent flows are for-
mally derived by applying a low-pass filter to the Navier-Stokes equations.
In doing so, it is often tacitly assumed that the filtering and differentiation

operations commute. This assumption is invalid if the filter width is not
uniform-as is the case if wall-bounded flows are computed-unless special
filter operators are constructed, see, e.g, Vasilyev et al. (1998).

Recent work by Marsden et al. (2000) resulted in a framework for the
construction of filters on unstructured grids which commute with differ-

entiation to a potentially arbitrarily high order. They also demonstrated
a filter operator with a second-order commutation error. However, their

method appears to be quite complicated in its construction, particularly
in three dimensions and near boundaries. Furthermore, it is dependent on
geometric comparisons with user-specified parameters.

The goal of the present work is to develop a simpler filtering method
than that of Marsden et al. (2000). The new filtering method is based on the

following observation: The conditions for filtering a function to a given order
of commutation error derived by Vasilyev et al. (1998) are formally identi-
cal to the conditions for reconstructing the gradient of a function to a given
order of truncation error. In other words, the construction of filtering oper-

ators may be reinterpreted as the construction of-suitably reformulated--
gradient-reconstruction methods. This apparently trivial observation has

important consequences because the reconstruction of gradients is central
to many flow-solution methods on unstructured grids and is well under-
stood, see Haselbacher and Blaek (2000).
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2. Least-Squares Gradient Reconstruction

The least-squares gradient-reconstruction procedure originally developed
by Barth (1991) is based on approximating the variation along an edge
linking vertices 0 and i by a truncated Taylor series, e.g., for a linear ap-
proximation,

Pi = a0 + (V)o " Aroi, (1)

where Aroi = ri - r0 and r = {x, y} t . The application of Eq. (1), or
corresponding higher-order approximations, to all edges incident to vertex
0 gives a system of linear equations for the derivatives at vertex 0,

Ax=b, (2)

where A is a do x no matrix of geometrical terms, x is an n0 -vector contain-
ing derivatives, and b is a d0-vector of function values, with no being the
number of derivatives reconstructed and do denoting the degree of vertex
0. Since there are usually more incident edges than derivatives, Eq. (2) is
solved for x in a least-squares fashion.

A general closed-form solution of Eq. (2) can be derived through the
QR-decomposition of A using the Gram-Schmidt process. In the following,
we denote by ai and qi the ith column vector of the matrices A and Q,
respectively, and by rij the ijth element of the upper triangular matrix R.
There is no summation over repeated indices. The general solution is

x = W t b, (3)

where W is a do x no matrix with column vectors wi given by

no

Wi= cjjqj + E Cik Ckk qk, (4)
k=i+l

with

qi cii ai + E cji aj .(5)

j=l

The geometrical quantities cij are defined as

Cii = r-1 (6)

Cij = - Cii rij + E cik Ckk rk) for j > i < no, (7)
k=i+l

where
1%j (ii . aj - rki rkj for j i < no. (8)

. k=1 /
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The general closed-form solution allows the reconstruction of derivatives
to an arbitrarily high order of accuracy on unstructured grids.

3. Least-Squares Filtering

The least-squares gradient-reconstruction method can be turned into a fil-
tering method by modifying Eq. (1), so that 00 is no longer a point value,
but represents a filtered value ¢0,

0i = 00 + (Vq)o0 Aroi. (9)

The effect of this modification is that the filtered value ý0 is appended to
the vector of unknowns x. The resulting system of equations can be solved
using the method described in Section 2. This leads to an expression for
the filtered value in the form of a weighted sum,

do

00= woi i. (10)

The accuracy of the filtering operation is determined by the order of
the derivatives included in the gradient reconstruction. For example, linear
gradient reconstruction leads to a second-order accurate expression for the
filtered value, with weights given by

= -4=1 ( T23A + r 1 2 r 2 3 - r13r22./x~oi(
r2 T22 rl1r22 /

It is easily verified that Eq. (11) leads to two vanishing moments,

do

woiAroi = 0,

which is merely a consequence of its second-order accuracy.
The spectral behaviour of Eq. (10) can be improved if the unfiltered

value 00 is also included in the stencil,

do

00 = woo000 + (1 - woo) 5 woiqi. (12)
i= 1

This modification does not degrade the accuracy of Eq. (10).
The remainder of this work is based upon Eq. (12) and investigates lin-

ear and quadratic filter functions. For both functions, the stencil is extended
to include an additional layer of vertices beyond the nearest neighbours. In
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the interior, this gives a stencil of 18 vertices for woo = 0 or 19 vertices for
Woo • 0. The motivation for extending the support is twofold. First, hav-
ing two layers of vertices allows the introduction of two parameters /3 and
-y, which can be used to weight the contributions to Eq. (10) of the inner
and outer layers, respectively. Together with woo, these additional degrees
of freedom may be used to optimize damping of high-wavenumber compo-
nents or to achieve a specified filter width. Second, the nearest-neighbour
stencil leads to a singular matrix A for the quadratic filter function on
uniform grids, thus necessitating the use of additional points in the stencil.

One advantage of the new filtering method is that it allows reusing
data structures and geometric weights already employed to compute gra-
dients in the flow-solution method. Furthermore, it is easily extended to
three dimensions and does not require special treatment at boundaries be-
yond ensuring-as for interior vertices-that the degree of a given vertex
is greater than the number of derivatives reconstructed at that vertex.

4. Determination of Filter Width

In the present work, the filter width is determined from the polar moment
of the filter transfer function,

7r/A 7r/A

0 0

where k = {k,, ky} t is the wave-number vector, G(kx, ky) is the filter trans-
fer function, and A is the grid spacing. In one dimension, this reduces to
the second moment of the filter transfer function, whose use in determining
the filter width was originally suggested by Lund (1997). In this section,
we assume the grid spacing to be uniform.

The ratio of the filter width Af to the grid spacing may be computed
from the relation

(14

A 8Jx-yA4 (4

The constants in Eq. (14) were chosen such that it gives the correct width
for the Fourier cut-off filter.

Figure 1(a) depicts the transfer function for the linear filter function
with woo = 1/5 and /3 = -y = 1. While high wave-numbers are damped
well, the transfer function deviates quickly from unity for low to moderate
wave-numbers, and, as such, is a poor representation of the Fourier cut-off
filter. Numerical evaluation of Eq. (13) gives a = 1.40.
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The transfer function for the quadratic filter function with woo = 1/2
and f3 = -y = 1 is shown in Fig. 1(b). Compared to the linear filter func-
tion, the quadratic filter function is a good approximation to the Fourier
cut-off filter for low to moderate wave-numbers. For higher wave-numbers,
preferred directions can be discerned which are aligned with the edges in
the grid. For the quadratic filter function, Eq. (13) gives a = 1.12.
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Figure 1. Transfer functions for filter functions on uniform grids and f = 7 = 1. (a)
Linear filter function with woo = 1/5 and (b) quadratic filter function with woo = 1/2.



296 A. HASELBACHER

5. Commutation Error

Marsden et al. (2000) proved that a filter with p - 1 vanishing moments
is needed to achieve a commutation error of order p for smoothly varying
filter widths in one dimension. An equivalent statement is that the filter
must be accurate to order p to achieve a commutation error of order p
for smoothly varying filter widths. For grids with arbitrarily varying filter
widths, the commutation error will drop below p. It is thus necessary to
construct filter operators of order p + 1 to obtain commutation errors of or-
der p on arbitrary unstructured grids. We are interested in this general case
since unstructured grids rarely satisfy smoothness constraints. To obtain a
second-order commutation error, we thus require quadratic filtering.

The order of the commutation error is computed by carrying out a
grid-refinement study using an analytic function for the unfiltered field.
Five uniform triangular grids were generated for a hexagonal domain, con-
taining 271, 1141, 4681, 18961, and 76321 vertices. The interior vertices
were subsequently distorted by random amounts of a given fraction of the
grid spacing in both coordinate directions. In the results presented below,
this fraction was taken to be 0.35. The distorted grid with 1141 vertices is
shown in Fig. 2.

Figure 2. Distorted grid with 1141 vertices. Inset shows detail of distorted grid.
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The commutation error is defined in terms of the discrete divergence,

E, u + (u + , (15)

where J(.)/Jx represents the discrete gradient operator in the x-coordinate
direction. The function chosen in the present study is

{u} { cos(r) sin (ry) }(16)
V sin(ýTx) cos(7ry) ý "

In computing the commutation-error norms, only the vertices were in-
cluded whose gradients or filtered values were not affected by boundary
effects. Effects of one-sided stencils arising from the presence of boundaries
will be studied in future work. It was verified that commutation errors were
identically zero for arbitrary functions on uniform grids.

The variation of the L2-norms of the commutation error with grid re-
finement is shown in Fig. 3. Note that the commutation error is about
an order of magnitude smaller than the truncation error of the divergence
operator. The order of accuracy of the filtering operator, the divergence
operator, and the order of the commutation error were computed from a
linear least-squares curve fit for the finest four grids. The slopes were de-
termined to be 3.05, 1.96, and 2.17, respectively. It is thus verified that the
commutation error obtained with the new quadratic filtering method on a
randomly distorted unstructured grid is of second order.

The ultimate test for commutation will be to specify a uniform filter
width on a randomly distorted grid using the parameters w0o, )3, and -y and
to check for zero commutation error. This is an objective of future work.

6. Conclusions

A new filtering method for unstructured grids was presented. Closed-form
expressions were given which allow the construction of filtering operators of
arbitrarily high order. The new filtering method is easily constructed, does
not require special treatment at boundaries, and allows reusing data struc-
tures and geometric terms needed by the flow-solution method without fil-
tering. Linear and quadratic filter functions were studied. A grid-refinement
study on randomly distorted grids demonstrated a commutation error of
second order.
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Figure 3. Variation of L2-norm of errors with grid refinement. Solid lines represent
linear curve fits to data, and N denotes the number of vertices.
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