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PHYSICS-PRESERVING TURBULENT CLOSURE MODELS

SGS Flux Vectors of Mass and Energy

LIQIU WANG
Department of Mechanical Engineering

The University of Hong Kong, Hong Kong

Abstract. Both necessary and sufficient conditions are derived in a system-

atic, rigorous way for a subgrid-scale (SGS) flux vector model to preserve
the frame-indifference of the vector and to satisfy both the principle of ma-

terial frame indifference (PMFI) and the second law of thermodynamics.
This leads to the results either confirming the previous intuitive arguments
or offering new insights into turbulence modelling, and is of significance in
clarifying some controversies in the literature, examining how well existing
models preserve the physics, and developing new models.

1. Introduction

SGS stresses and fluxes of mass and energy are believed to be quantities

determined by filtered large-scale velocity and mass fraction/temperature
fields in the large eddy simulation (LES). Based on this fundamental, in-
trinsic belief, various approaches have been proposed to relate SGS stresses

and fluxes to the filtered large-scale fields, so-called SGS turbulence mod-

elling. The readers are referred to Ciofalo (1994), Mason (1994), Lesieur
& M~tais (1996) and Sagaut (2001) for some recent excellent reviews and

discussions of this important topic. While some LES results based on some

commonly used models seem encouraging, they fail to meet either one or

both of two natural fundamental requirements for turbulence models: pre-
serving the fundamental properties of the quantities being modeled and
satisfying some classical principles.

The modelling of the SGS flux vectors of mass and energy consists of

replacing them by constitutive equations expressing them as functions of
filtered large-scale fields of velocity and mass fraction/temperature. While

such constitutive equations may take different forms such as algebraic and

differential, it appears to be a basic requirement to preserve the properties
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which the flux vectors hold by their definition. Such a property is the frame-
indifference (Fureby & Tabor 1997, Ghosal 1999, Wang 2001). It follows
from the definition of the SGS flux vectors and states that they remain the
same directed line element under a change of frame. The issue concerned
with whether a model guarantees this property is referred as the invariance
in the literature.

While the first requirement focuses on the properties of the SGS flux
vectors themselves, the second requirement emphases on their function rela-
tion with the filtered large-scale fields. Such function relations are required
to satisfy some classical principles including the PMFI and the second law
of thermodynamics (Fureby & Tabor 1997, Ghosal 1999, Wang 1997, 1999,
2001). The PMFI requires that the function relation is the same for every
observer, i.e. in every frame of reference. The second law of thermodynam-
ics, on the other hand, states that the flux is always from high concentration
to low concentration. Note that the realizability for the Reynolds and SGS
stresses also comes from the second law of thermodynamics (Wang 1999,
2001).

The motivation for the present work comes from the desire to derive
both necessary and sufficient condition in a systematic, rigorous way for a
SGS flux model to preserve the frame-indifference of SGS flux vectors and
to satisfy both the PMFI and the second law of thermodynamics. Unlike
the works in the literature, no intuitive assumption is introduced in the
derivation; the independent variables are chosen properly; the PMFI and
the frame indifference of SGS flux vectors are clearly distinguished. This
leads to some conclusive results. Among them, some confirm the previ-
ous intuitive arguments, and others form new insights to SGS turbulence
modelling.

2. Principle of Material Frame-Indifference and Second Law of
Thermodynamics

Consider a class of constitutive relations which relate the passive SGS flux
vector q of mass or energy to its arguments 0, O.P., VO, v, L, i.e.,

q = f(0, O.P., VO, v, L). (1)

Here f is a vector-valued function. 0 is the concentration of a property.
It is the mass fraction of a species for the case of SGS flux of mass, and
the temperature when q is the SGS flux of energy. O.P. denotes the other
scalar-valued thermophysical parameters which are independent of v and
L and are typically the local thermodynamic state variables. VO is the
gradient of 9. v is the filtered velocity vector. L is the velocity gradient
tensor of v, a second order tensor-valued variable.
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In sharp contrast with that in the literature, we choose L as an indepen-

dent variable instead of its symmetric part D (the velocity strain tensor)

and skew part W (the vorticity tensor) because D and W can not be re-
garded as independent. We do not include k, 1 or E as the independent

variables. The exclusion of the explicit dependence of q on time t and po-

sition vector r comes from the fact that they affect q through 0, O.P., VO,
v and L.

The relation (1) satisfies both principle of determinism and principle

of local action since we assume that q at a point and a time instant is a
function of its arguments at that point and that instant.

The principle of frame-indifference requires that f is the same for every

observer, i.e.
q* = f(0*,O.P.*,(VO*)*,v*,L*) (2)

in which superscript * represents the quantities observed by another ob-
server *.

The second law of thermodynamics states that q is always from high

concentration to low concentration. This requires that: (1) f changes its

sign if V0 changes the sign, i.e.,

f(0, O.P., - V 0, v, L) -f(0, O.P., v0, v, L), (3)

and (2) the projection of the f on V0 is negative semi-definite, i.e.,

f VO<O. (4)

2.1. NECESSARY CONDITIONS FOR REQUIREMENTS (2) AND (3)

2.1.1. q - v relation

Theorem 1. f is independent of v.

Proof From the principle of observer transformations (Geankoplis 1983,
Truesdell 1991),

O* = 0, (O.P.)* = O.P., = Q(t)q,
(V0*)* = Q(t)VO, L* = Q(t)LQT (t) + 0(t)QT(t),
r* = Q(t)r + c(t), v* = dr" = 0(t)r +I Q(t)v + ý(t),

(5)
where Q is an arbitrary rotation tensor, r a position vector of material

point, c(t) an arbitrary vector-valued function of time t, and a dot over a

letter indicates a time derivative. In (5), we have used the frame indifference

of q.
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By making use of (1) and (5), (2) yields (suppressing t)

f(0, O.P., Q70, (Qr + Qv + ý, QLQT + QQT) = Qf(0, O.P., vo, v, L),
VQ and c.

(6)
Since (6) holds for all Q, it must be true for Q = 1. Take Q - 1, then
Q 0 0. Equation (6) reduces to

f(0, O.P., VO, v + ý, L) = f(9, O.P., 70, v, L) V& (7)

This implies that f is independent of velocity v.
By applying Theorem 1, (1) and (6) reduce to

q = f(O, O.P., vo, L), (8)

f(9, O.P., Qv0, QLQT + (QT) = Qf(O, O.P., VO, L) VQ. (9)

2.1.2. q- L relation
Note that L can be uniquely decomposed into a symmetric tensor D (ve-
locity strain tensor) and a skew tensor W (vorticity tensor). Expression (9)
may, then, be rewritten as

f(O, O.P., QVO, QDQT+QWQT+QQT) = Qf(0, O.P., VO, L) VQ. (10)

Theorem 2. For rotation tensor Q(t) = exp[CI(t - T)]Q, we can, at any

instant r, pick Q(,r) and Q(Tr)QT(r) to be arbitrary, independent rotation
and skew tensors, respectively. Here Q is any time-independent rotation
tensor, and 0 any time-independent skew tensor.

Proof As 6 is a time-independent skew tensor, exp[1C(t - r)] is thus

a rotation tensor for any fixed time r and all time t. Since both (4 and
exp[6(t - r)] are rotation tensors, Q(t) = exp[l (t - r)](Q is also a rotation
tensor for all time t. Also,

Q(r) = Q, (11)

Q(-r)Q T (T) = •IQ(T)Q T (T) = f. (12)

They are clearly independent rotation and skew tensors if Q and fl are any
tine-independent rotation and skew tensors, respectively.

Theorem 3. L affects q only through velocity strain tensor D.

Proof To prove this, choose Q(t) defined in Theorem 2 as the rotation
tensor in (10) while for any instant T, -QWQT 1, is used as the skew
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tensor fl, i.e. b = -QWQT I (Such a 6 do a skew tensor since fT _

-QWTQT IT= QWQT 1,= -f). Then at time t = T, (10) yields

f(O, O.P., Q,7, DQT) =Qf(, O.P., VO, L) VQ. (13)

As this is true for all rotation tensor Q, it must hold for ( = 1. Let Q 1,

(13) yields
f(0, O.P., vO, L) = f(0, O.P., VO, D), (14)

or
q = f(, O.P., VO, D). (15)

2.1.3. q-vO relation
Expression (15) and the principle of frame-indifference together yield

q* = f(0*, (O.P.)*, (v0*)*,D*) (16)

By making use of (5), (15) and D* = QDQT (Truesdell 1991), (16) leads
to

f(O,O.P.,QVO,QDQT) =Qf(O,O.P.,VO,D) VQ. (17)

Also the second law of thermodynamics [Eq.(3)] requires that

f(0, O.P., -VO, D) = -f(0, O.P., VO, D). (18)

Since the velocity strain tensor D is a real, symmetric tensor, it has
three real eigenvalues. The three eigenvalues can be distinct, identical, or

two of them can be identical. In the present work, we focus on the case that
the three eigenvalues are distinct. Similar results may be obtained for the
other two cases.

Theorem 4. VO, DVO, D 2 VO are linearly independent if three eigenvalues
of D are distinct.

Proof Let Pk and fk (k = 1, 2, 3) to be the eigenvalues and eigenvectors
of D. D may be represented, in its spectral form, as

3

D = Z -kfk ® fk. (19)
k=l

The linear independence of fk(k = 1, 2, 3) allows us to write 70 as

vO = (vO)fj (20)

in which (vO)j = vO" fj
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Suppose that Vt?, DVO and D 2V V are linearly dependent for all D and
Vt, there are a, , and -y which are not all zero, such that

aV9 +I3DVO + yD 2 VO = 0. (21)

Substituting (19) and (20) into (21) yields

3

Z(a + OM k)(VO)kfk = 0, (22)
k=1

which implies, as fk (k = 1, 2, 3) are linearly independent,

(ao+/ 3•tk + O 2w )(VO)k =0, (k= 1,2,3). (23)

For arbitrary TO, (V•)k need not be zero, so

Q+014 k+y'2k=0, (k=1,2,3) (24)

that requires that a = = -y = 0 for distinct Pk, contrary to the hypothesis.
Theorem 4 has, thus, been proved.

Applying Theorem 4 to the SGS flux vector, we have

f(0, O.P., vT, D) = 00(0, O.P., VO, D)VO + 01 (0, O.P., VO, D)DVO
+02(0, O.P., VO, D)D 2VO,

(25)
and

f(0, O.P., -VO, D) = -q¢o(0, O.P., -VO, D)VO
-_1 (0, O.P., -VO, D)DVO - 0k2(0, O.p., -VO, D)D 2VO. (26)

Substituting (25) and (26) into (18) leads to

[q0o(0, O.P., VO, D) - 0o(9, O.P., -VO, D)]VO
+[01 (0, O.P., VO, D) - 01i(0, O.P., -VO, D)]DVO (27)
+[02(0, O.P., VO, D) - 02(0, O.P., -VO, D)]D 2 V0 = 0

which implies, since VO, DVO and D2V V are linearly independent,

Pi(0,O.P.,VO,D) =¢i(9,O.P.,-VO,D), (i = 0,1,2). (28)

To satisfy this requirement, take

qi(O,O.P.,VOi,D)= ii(0,O.P.,vt 0V0?,D), (i = 0,1,2). (29)

Then (25) and (29) result in

f(0, O.P., QvO, QDQT) = Q(4'oVO + ?DVO + '2D 2 VO) (30)
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in which,
ýj = ¢i(0, O.P., QVO & QV0, QDQT),

and
Qf(0, O.P., V0, D) = Q(0oVO + 0'1 DV0 + 0 2D 2 vO). (31)

By making use of (30) and (31), (17) yields

(bo - 00o)v0 + (ý1 - 0I)DVO + (ý2 - 0 2 )D 2 vO = 0 (32)

that implies, by Theorem 4,

Oj(0, O.P., QvO 0 QVO, QDQT) = 0i(0, O.P., 0o® 7o, D) VQ. (33)

Theorem 5. Suppose

V(0, O.P., Qb 0 Qb, QBQT) = 0(0, O.P., b 0 b, B), Vb and B,

then
0(0, O.P., a ® a, A) = V)(0, O.P., b 0 b, B)

whenever Jk(a,A) = Jk(b,B) (k = 1,2,...,6). Here

Ji(a,A) = trA, J 2 (a,A) = ½[(trA)2 - tr(A2 )], J3 (a,A) = detA,
J 4 (a, A) = a. Aa, J 5 (a, A)= a A 2 a, J 6 (a, A) =1 a

a and b are two arbitrary vectors, A and B are two arbitrary symmetric
tensors.

Proof Since Jk(a, A) = Jk(b, B) (k = 1, 2,3), tensors A and B have same
eigenvalues. Let Pk be their eigenvalues, A and B may be written as,

3 3

A =1 j kek 9 ek, B= E Pkfk fk
k=1 k=1

where ek and fk (k 1, 2, 3) are eigenvectors of A and B, respectively.
Define

Q=ek0fk

that is a rotation tensor, and

ei=Qfi, A =QBQT, A 2 =QB 2 QT, (i=1,2,3). (34)

By applying Jk(a,A) = Jk(b,B) (k =4,5,6), we have

3 3 3 3

Z(b-fk) 2 = Z(QTa.fk) 2 , ZPk(b.fk)2 = 14k(QTa'fk) 2 ,
k=1 k=1 k=1 k=1

3 3

/1(b fk) 2 = P2(Q T a fk) 2 .
k=1 k=1
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This implies, for the distinct lik (k = 1, 2,3),

(QTa:Fb)'fk=0, (k=1,2,3). (36)

Note that fk (k = 1, 2,3) are linearly independent, then a = ±Qb, a®
a = Qb ® Qb. By hypothesis,

0(0, O.P., b ® b, B) = 0(0, O.P., Qb ® Qb, QBQT) = 0(0, O.P., a ® a, A)

in which A = QBQT [ (34)] and a ® a = Qb & Qb are used. Therefore,

p(G,0.P.,b®b,B)=Vb[O,O.P.,Jk(b,B)], (k=1,2,...,6) (37)

if

0(0, O.P., Qb 0 Qb, QBQT) = 0(9, O.P., b ® b, B), Vb and B. (38)

The converse is also true since Jk(Qb, QBQT) = Jk(b, B) (k = 1, 2,..., 6).

Theorem 6. The necessary condition for the constitutive process (1) to
satisfy requirements (2) and (3) is

q = f(0, O.P., ,7, D) = (¢o1 + 0 1D + ¢2D2)V0

where

Oj=Oi[8, O.P.,Jk(V0,D)], (i=0,1,2; k=1,2,-..,6).

Proof Applying Theorem 5 to (33) yields

Vpi(O, O.P., v70 0v,, D) = VPi[d, O.P., Jk(70, D)]. (39)

This, with (25) and (29), leads to

q = f(O, O.P., VO, D) = (401 + 0 1D + 02D 2 )V0 (40)

where

Oi = i[O, O.P., Jk(170, D)], (i =0, 1,2; k =1,2,1...,6).

If the three eigenvalues of D are not distinct, we can still obtain (40) with

01 = 02 = 0 (for the case of three identical eigenvalues) or 02 = 0 (for the
case of two identical eigenvalues) by the similar method. Therefore, (40) is
valid for all cases.
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2.2. SUFFICIENCY OF (40) FOR REQUIREMENTS (2) AND (3)

Suppose (40) holds, then

f(0*, O.P.*, (V0*)*, v*, L*) ={ 0(0*, O.P.*, Jk((VO*)*, D*))1
+q1 (0*, O.P.*, Jk ((V0*)*, D*))D* + 22(0*, O.P.*, Jk ((V0*)*, D*))D* 2}
(70*){* = f0(0, O.P., Jk(Q V 0, QDQT))Q1QT + 01 (0, O.P., Jk (Q V 0,
QDQ T ))QDQ T + 02(0, O.P., Jk(Q V 0, QDQ T ))QD 2 Q T}Q v 0

= Q{10(0, O.P., Jk(Q V 0, QDQT))1 + 01(0, O.P., Jk(Q V 0, QDQT))
D + 02(2, O.P., Jk(Q v 0, QDQT))D 2 }QTQ v 0

=Qf(0,O.P.,v0,v,L)=q*, (k=1,2,...,6)
(41)

in which Eq.(5), D* = QDQT and Jk(Q V 0, QDQT) = Jk(V0, D) (k
1,2,....,6) are used.

Also, if (40) holds,

f(0, O.P., - V O,v,L) = {0o(0, O.P., Jk(- V 0,D))I
+±1(0, O.P., Jk(- V 0,D))D + 72(0, O.P., Jk(- V 0,D))D 2 }(- V 0)
= -{fo(0, O.P., Jk(VO, D))1 + 01(0, O.P., Jk(VO, D))D
+±02(0, O.P., Jk(VO, D))D 2 }(V0) = -f(0, O.P., V0, v, L), (k = 1, 2,..., 6)

(42)
in which Jk(-V 0, D) = Jk(VO, D) (k = 1,2,... ,6) are used. Equations
(41) and (42) establish the sufficiency of (40) for (2) and (3).

2.3. PROPERTIES OF 0I (I = 0, 1, 2) AND BOTH NECESSARY AND
SUFFICIENT CONDITIONS FOR INEQUALITY (4)

Both necessity and sufficiency of (40) for Eqs.(2) and (3) are established
in §2.1 and §2.2. Here we analyze some fundamental properties of Oi (i =
0, 1, 2), and develop both necessary and sufficient conditions for inequality
(4).

Rewrite Eq.(40) as

q = -KV0, (43)

with

K= -(00ol + 01D + 0 2 D 2 ) = Wol + WoD + W2 D 2 . (44)

Here 1 is a unit (identity) tensor, and

Wji= -0i (i =0, 1,2). (45)

K has two fundamental properties: (1) it is a real-valued tensor on the
ground of practical transport processes, and (2) it is a symmetric tensor
due to the symmetry of velocity strain tensor D.
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Let A• and fj (j = 1, 2, 3) be the three eigenvalues of D and K, respec-
tively. Since K is related to D through Eq.(44),

fj = oO+ ýlA +p 2A4, (j=1,2,3). (46)

Because D and K are real-valued symmetric tensors, Aj and fj (j =1, 2,3)
must be real-valued, i.e.,

fj = fj, (j = 1, 2, 3), (47)

A3=Aj, (j-=-1,2,3). (48)

By Eq.(46),

fj= +0 IP±'A1 X +ý 2A, (j =1,2,3). (49)

By making use of Eqs.(47) and (48), Eq.(49) leads to

fS = 00 + I1 A3 + ýP2Aý, (j = 1, 2, 3). (50)

This, with Eq.(46), yields

(ý0- O) + (pl - 1 I)Aj + (2 -P 2 )A2 =0, (j=1,2,3), VAjeR
(51)

which indicates that

(pi (i = 0, 1, 2). (52)

Therefore, ýpj (i = 0, 1, 2) must be real-valued.
Substituting Eq. (43) into inequality (4) yields

V0. KV0 > 0, V'7, (53)

which implies that K is positive semi-definite. Note also that K is, in prac-
tice, an invertible tensor, it must be positive definite. The same conclusion
may be obtained by noting that the equal sign in (4) is only for reversible
processes and transport processes are irreversible.

The necessary and sufficient condition for a symmetric tensor to be
positive definite is that all of its eigenvalues are positive definite. Both
necessary and sufficient condition for inequality (4) is, thus,

Wo0 Wjlj÷W2A2>0, (j=1,2,3), VAjER. (54)

Two necessary conditions of (54) can be easily obtained by considering
cases of Aj = 0 and I A, 1-+ cc, respectively, as

WO > 0, (55)
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V2 > 0. (56)

Dividing (54) by V0, we can rearrange (54) into an alternative form

(1+- ) + P2- I )A2 > 0 VAjcR. (57)

2(po Vo 4p

This yields another necessary condition, by setting )\j = -2Wo1,

V1 - 4 W02 < 0. (58)

Conversely, it is easy to show that (55), (56) and (58) are also the sufficient
conditions of (54).

The detailed expressions of V0, V, and W2 are material-dependent and
need to be determined through experiments. Once they are determined,
Eq. (43) can serve as the SGS flux model that is properly invariant and
satisfies the second law of thermodynamics.

3. Concluding Remarks

For a class of turbulence flows for which the SGS flux vector can be de-
scribed by Eq.(1), both necessary and sufficient conditions are derived in
a systematic, rigorous way for the invariance, the PMFI and the second
law of thermodynamics. This leads to a general model (43) with three real-
valued functions Vi (i = 0, 1, 2) satisfying (55) (56) and (58). Any specific
model satisfying (43), (55), (56) and (58) is properly invariant and satisfies
the second law of thermodynamics while the model violating these condi-
tions is not. The work is believed to be important both for developing the
specific, physics-preserving models and for clarifying some confusion in the
literature by noting that the previous works employ an intuitive approach

with the focus on only obtaining the sufficient condition.
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