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Abstract. We propose to perform turbulent flow simulations in such a
manner that the difference operators do have the same symmetry prop-
erties as the underlying differential operators, i.e. the convective operator
is represented by a skew-symmetric matrix and the diffusive operator is
approximated by a symmetric, positive-definite matrix. Such a symmetry-
preserving discretization of the Navier-Stokes equations is stable on any
grid, and conserves the total mass, momentum and kinetic energy (when
the physical dissipation is turned off). Its accuracy is tested for a turbu-
lent channel flow at Re=>5,600 (based on the channel width and the mean
bulk velocity) by comparing the results to those of physical experiments
and previous numerical studies. This comparison shows that with a fourth-
order, symmetry-preserving method a 64 x 64 x 32 grid suffices to perform
an accurate direct numerical simulation.

1. Introduction

The smallest scales of motion in a turbulent flow result from a subtle
balance between convective transport and diffusive dissipation. In math-
ematical terms, the balance is an interplay between two differential oper-
ators differing in symmetry: the convective derivative is skew-symmetric,
whereas diffusion is governed by a symmetric, definite operator. With this
in mind, we have developed a spatial discretization method which preserves
the symmetries of the balancing differential operators. That is, convection
is approximated by a skew-symmetric discrete operator, and diffusion is dis-
cretized by a symmetric, definite operator. Second-order and fourth-order
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versions have been developed thus far, applicable to structured nonuniform
grids. The resulting semi-discrete representation conserves energy exactly
in the absence of physical dissipation. For finite Reynolds numbers, i.e. in
the presence of physical dissipation, the kinetic energy of any discrete solu-
tion decreases unconditionally in time. Therefore, a symmetry-preserving,
spatial discretization is stable on any grid, and we need not add an artificial
demping mechanism that will inevitably interfere with the subtle balance
between convection and diffusion at the smallest length scales. This forms
our motivation to investigate symmetry-preserving discretizations for direct
numerical simulation (DNS) of turbulent flow. Because stability is not an
issue, the main question becomes how accurate is a symmetry-preserving
discretization, or stated otherwise, how coarse may the grid be for a DNS?
We will address this question in Section 2 by evaluating the results for a
turbulent flow in a channel at Re=5,600. We will kick off by sketching the
main lines of symmetry-preserving discretization (Section 1). For a more
detailed discussion, we refer to Verstappen and Veldman (1998, 2002). Con-
servation properties of numerical schemes for the Navier-Stokes equations
are currently also pursued at other research institutes, see e.g. Hyman et al.
(1992), Morinishi et al. (1998), Vasilyev (2000), Twerda (2000) and Ducros
et al. (2000).

2. Symmetry-preserving discretization

The temporal evolution of the discrete velocity vector uy is governed by a
finite-volume discretization of the incompressible Navier—-Stokes equations:
duh *

Q~a—i—+C(uh)uh+Duh——M p,=0 Mu, =0, (1)
where the vector p;, denotes the discrete pressure, §2 is a (positive-definite)
diagonal matrix representing the sizes of the control volumes, C (uy,) is built
from the convective flux contributions through the control faces, D contains
the diffusive fluxes, and M is the coefficient matrix of the discretization of
the integral form of the law of conservation of mass. The coefficient matrices
C (up) and D are constructed such that

C (up) + C* (up) = 0, D + D* positive-definite. (2)

The symmetry condition on the coefficient matrix C (u) reflects that
C (up) represents a discrete gradient operator: its null space consists of
the constant vectors (provided that the consistency condition C (uy)1 =0
is satisfied) and C (u},) is skew-symmetric like a first-order differential op-
erator. The coefficient matrix D of the discrete diffusive operator inherits
its positive-definiteness from the underlying diffusive, differential operator

-V -V/Re.
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The semi-discretization (1)-(2) is conservative and stable. The total
mass is trivially conserved, and the same holds for the total amount of
momentum (provided that the discretization is exact for up = 1). The
evolution of the discrete energy w}Quy of any solution up of (1)—(2) is
governed by

d
—(u; Quyp) w —uj (C + C*)up, — uj (D + D*)uy, + 2py Muy,
dt T
@) " %
= —uh(D + D )uh <0, (3)

where we have used the skew-symmetry of C (uy). The right-hand side is
zero if and only if up, = 0, or D + D* = 0. Thus, the energy is conserved
if the diffusion is turned off. Note that the pressure term M*p, in (1)
does not affect the evolution of the total kinetic energy (on condition that
Muy, = 0), because the discrete pressure gradient is represented by the
transpose of the coefficient matrix M of the incompressibility constraint.

With diffusion (that is for D # 0) the right-hand side of (3) is negative
for all uy, # 0 provided that D + D* is positive-definite. So, the energy of
the discrete system (1) decreases in time if (2) is satisfied. The semi-discrete
system (1) is stable under this symmetry condition: a solution of (1) can
be obtained on any grid, and there is no need to add an artificial damping
mechanism to stabilize the spatial discretization.

Since these favorable conscrvation and stability properties are directly
related to the symmetries of the coefficient matrices in (1), we want to
construct these matrices such that they fulfil (2). To illustrate the way in
which this may be achieved, we consider the approximation of the first-order
derivative in one spatial dimension. The traditional method maximizes the
(formal) order of the local truncation error. On a stencil consisting of three
points, this leads to the second-order approximation

Oru(z;) =~ %Q;l (T;1Ui+1 — (7t = r)u - Tiui—l) ; (4)
where
Q=L (zip —2im1)  and = (@i - 3) /(@ — zio1).

The essence of our method is that the first-order derivative Oyu(z;) is ap-
proximated by a discrete opecrator Q1C, where the coefficient matrix C
is skew-symmetric:

Opu(ms) = 59 (U1 — uip1) .- (5)

The two ways of discretization are illustrated in Figure 1.
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Figure 1. Two ways of approximating J;u. In the left-hand figure the derivative is ap-
proximated by means of a Lagrangian interpolation, that is by Eq. (4). In the right-hand
figure the symmetry-preserving discretization (5) is applied.

As the diagonal-entry of operator in the right-hand side of (4) is non-zero
for ry # 1, the standard discretization method breaks the skew-symmetry
on a nonuniform grid. Consequently, the standard method does not conserve
the energy and is not conditionally stable on nonuniform meshes.

The local truncation error of the symmetry-preserving discretization

h(@:) = 5(0iy1 — 02:)Ozuu(ms) + O(822,,,), (6)

is first-order, unless the grid is (almost) uniform. Given stability, a sufficient
condition for second-order accuracy of the discrete solution u; is that the
local truncation error 74 be second order. Then the error €, in the solution
up, given by Q7 'Cey, = 73, is second-order. Yet, this is not a necessary con-
dition, as is emphasized by Manteufel and White (1986). They have proven
that the symmetry-preserving approximation yields second-order accurate
solutions on uniform as well as on nonuniform meshes, even though its local
truncation error 7 is formally only first-order on nonuniform meshes.

The accuracy of the basic scheme (5) may be improved by means of
a Richardson extrapolation, just like in Antonopoulos-Domis (1981). This
results into the following, fourth-order accurate discretization:

Oru(z;) ~ %Qz—l (—uipo + 8uijry — 8u;—1 + uj—2),

where
Q= % (—Zip2 + 8241 — 8xi-1 + T5-2) .

The diffusive operator undergoes a similar treatment, leading to

Uit — U Y —Ui—1> B (Ui+2 —Up Ui — ui—2>
Tiya —Ti T —Tig/)

Tit1 —Ti T — Ti-1
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Next, we will compare the symmetry-preserving discretization with the
traditional discretization methods based on Lagrange interpolation (mini-
mizing local truncation error) for a steady-state solution of the convection-
diffusion equation

O + w0, u — Oggu/Re = 0.

Since on uniform grids the methods are equal, we choose an example with a
boundary-layer character, requiring grid refinement near the outflow bound-
ary = 1. This is achieved by imposing the boundary conditions u{0,¢) =0
and u(1,t) = 1. The parameters are set equal to & = 1 and Re = 1, 000.

Grid refinement has been carried out on an exponentially stretched grid,
with half the grid points in the thin boundary layer of thickness 10/Re near
x = 1. Four discretization methods have been investigated:

— The traditional Lagrangian second-order method (2L) and its fourth-
order counterpart (denoted by 4L) where we have implemented exact
boundary conditions to circumvent the problem of a difference molecule
that is too large near the boundary;

— The second-order (2S) and fourth-order (4S) symmetry-preserving meth-
ods.

We form the vector uexact by restricting the analytical solution to the
grid points, and monitor the global discretization error defined by ||up —
Uexact||n (where the norm is the kinetic energy norm). Figure 2 shows the
global error as a function of the mean mesh size 1/N, where N is the number
of grid points.

A number of observations can be made.

— For all grid sizes the Lagrangian discretization appears to be less ac-
curate than its symmetry-preserving alternative.

— For coarser grids the 4th-order Lagrangian method is not even as ac-
curate as its 2nd-order Lagrangian relative. Similar observations have
been made frequently, and this explains why thusfar 4th-order dis-
cretization has not been very popular.

— The symmetry-preserving methods already behave nicely on coarse
grids. They display a regular monotone behaviour upon grid refine-
ment. Moreover, the discretization error of 4S (2S) picks up its final
slope at much coarser grids then 4L (2L). As in turbulent-flow simu-
lations one will always have to cope with limitations on the affordable
number of grid points, methods that are less sensitive in this respect
are preferable.

— Also note that for a given accuracy (say 1079), the grid size of the
4th-order symmetry-preserving method can be chosen roughly three
times larger than that of the 4th-order Lagrangian method!
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Figure 2. The left-hand figure shows the global error as a function of the mean mesh size
on an exponential grid with half of the grid points inside a boundary layer of thickness
10/Re. Four methods are shown: 2L and 4L (2nd- and 4th-order Lagrangian), 2S and
45 (2nd- and 4th-order symmetry-preserving). The right-hand figure depicts the number
of eigenvalues of the Lagrangian methods 2L and 4L located in the unstable halfplane.
Only the Lagrangian methods are shown, since the symmetry-preserving discretization
keeps all the eigenvalues in the stable halfplane.

— The fourth-order Lagrangian method nearly breaks down for N = 28
where the stretching factor is 0.72 (which is not extreme). This is due
to an eigenvalue moving from the unstable half plane (for low values
of N), towards the stable half plane (for higher N), which crosses the
imaginary axis close to the origin, making the coefficient matrix almost
singular. When one or more eigenvalues of the coefficient matrix are
located in the unstable halfplane, the corresponding time-dependent,
semi-discrete system is unstable, and can not be integrated in the time
domain. In the above examples we have computed the discrete steady-
state by a direct matrix solver to avoid this problem.

For details concerning the application to the three-dimensional, incom-
presible Navier-Stokes equation, we refer to Verstappen and Veldman (1998,
2002). On a uniform grid, the second order scheme proposed by Harlow
and Welsh (1965) preserves the symmetries of the convective and diffusive
operator. In outline, we have generalized Harlow and Welsh’s scheme to
nonuniform meshes in such a manner that the symmetries are not broken,
and apply Richardson extrapolation to improve the order of accuracy. A
variant of our approach for collocated grids has been developed at Delft
University (Twerda, 2000).
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3. A challenging test-case: turbulent channel flow

In this section, the symmetry-preserving discretization is tested for turbu-
lent channel flow. The Reynolds number is set equal to Re = 5,600 (based on
the channel width and the bulk velocity), a Reynolds number at which di-
rect numerical simulations have been performed by several research groups;
see Kim et al. (1987), Gilbert and Kleiser (1991), Kuroda et al. (1995). In
addition we can compare the numerical results to experimental data from
Kreplin and Eckelmann (1979).

As usual, the flow is assumed to be periodic in the stream- and spanwise
direction. Consequently, the computational domain may be confined to a
channel unit of dimension 27 x 1 X 7, where the width of the channel is
normalized. All computations presented in this section have been performed
with 64 (uniformly distributed) streamwise grid points and 32 (uniformly
distributed) spanwise points. In the lower-half of the channel, the wall-
normal grid points are computed according to

sinh (vj/N,) o
SRS/ th §=0.1..N,/2
Y= 9sinh (7/2) with 7 =0,1,.... Ny/2,

where N, denotes the number of grid points in the wall-normal direction.
The stretching parameter 7 is taken equal to 6.5. The grid points in the
upper-half are computed by means of symmetry.

The temporal integration of (1) is performed with the help of a one-
leg method that is tuned to improve its convective stability (Verstap-
pen and Veldman, 1997). The non-dimensional time step is set equal to
0t = 1.25 1073, Mean values of computational results are obtained by av-
eraging the results over the directions of periodicity, the two symmetrical
halves of the channel, and over time. The averaging over time starts after a
start-up period. The start-up period as well as the time-span over which the
results are averaged, 1500 non-dimensional time-units, are identical for all
the results shown is this section. Figure 3 shows a comparison of the mean
velocity profile as obtained from our fourth-order symmetry-preserving sim-
ulation (Ny = 64) with those of other direct numerical simulations. Here
it may be stressed that the grids used by the DNS’s that we compare with
have typically about 1283 grid points, that is 16 times more grid points
than our grid has. Nevertheless, the agreement is excellent.

To investigate the convergence of the fourth-order method upon grid
refinement, we have monitored the skin friction coefficient Cy as obtained
from simulations on four different grids. We will denote these grids by A,
B, C and D. Their spacings differ only in the direction normal to the wall.
They have Ny = 96 (grid A), N, = 64 (B), Ny = 56 (C) and Ny = 48 (D)
points in the wall-normal direction, respectively. The first (counted from
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Figure 8. The mean streamwise velocity u* versus y*. The dashed lines represent the
law of the wall and the log law. The markers represent DNS-results that are taken from
the ERCOFTAC Database.

the wall) grid line used for the convergence study is located at y;” ~ 0.95
(grid A), yf =~ 14 (B), i ~ 1.6 (C), and y§ ~ 1.9 (D), respectively.
Figure 4 displays the skin friction coeflicient C; as function of the fourth

0.00840 r
Grid A: 64x96x32
B: 64x64x32
o I C: 64x56x32
D: 64x48x32
0.00835 |
0.008:300 . 1' . 20
5 0 15 (y‘+)4

Figure 4. Convergence of the skin friction coefficient Cy upon grid refinement. The
figure displays C; versus the fourth power of the first grid point y;'.
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power of y;". The convergence study shows that the discretization scheme is
indeed fourth-order accurate (on a nonuniform mesh). This indicates that
the underlying physics is resolved when 48 or more grid points are used in
the wall normal direction. In terms of the local grid spacing (measured by
y7), the skin friction coefficient is approximately given by C; = 0.00836 —
0.000004(y; )*. The extrapolated value at yi = 0 lies in between the C;
reported by Kim et al. (1987) (C; = 0.00818) and Dean’s correlation of
C; = 0.073 Re~'/* = 0.00844 (Dean, 1978).

The convergence of the fluctuating streamwise velocity near the wall
(0 < y* < 20) is presented in Figure 5. Here, we have added results obtained
on three still coarser grids (with N, = 32, N, = 24 and Ny = 16 points
in the wall-normal direction, respectively), since the results on the grids
A, B, C and D fall almost on top of each other. The coarsest grid, with
only Ny = 16 points to cover the channel width, is coarser than most of
the grids used to perform a large-eddy simulation (LES) of this turbulent
flow. Nevertheless, the 64 x 16 x 32 solution is not that far off the solution
on finer grids, in the near wall region. Further away from the wall, the
turbulent fluctuations predicted on the coarse grids (N, < 32) become too
high compared to the fine grid solutions, as is shown in Figure 6.

The solution on the 64 x 24 x 32, for example, forms an excellent starting
point for a large-eddy simulation. The root-mean-square of the fluctuating
streamwise velocity is not far of the fine grid solution, and viewed through
physical glasses, the energy of the resolved scales of motion, the coarse
grid (N, = 24) solution, is convected in a stable manner, because it is
conserved by the discrete convective operator. Therefore, we think that the
symmetry-preserving discretization forms a solid basis for testing sub-grid
scale models. The discrete convective operator transports energy from a
resolved scale of motion to other resolved scales without dissipating any
energy, as it should do from a physical point of view. The test for a sub-
grid scale model then reads: does the addition of the dissipative sub-grid
model to the conservative convection of the resolved scales reduce the error
in the computation of ;.

The results for the fluctuating streamwise velocity uyys are compared
to the experimental data of Kreplin and Eckelmann (1979) and to the
numerical data of Kim et al. (1987) in Fig. 7. This comparison confirms
that the fourth-order, symmetry-preserving method is more accurate than
the second-order method. With 48 or more grid points in the wall normal
dircction, the root-mean-squarc of the fluctuating velocity obtained by the
fourth-order method is in close agreement with that computed by Kim et
al. (1987) for y* > 20 (Figure 7 shows this only for y* up to 40; yet,
the agreement is also excellent for y* > 40). In the vicinity of the wall
(y+ < 20), the velocity fluctuations of the fourth-order simulation method
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Figure 5. The root-mean-square velocity fluctuations normalized by the wall shear
velocity as function of the wall coordinate y* on various grids for y* < 20. The markers
correspond to the results obtained in the grid points. The solution on grid B is also
represented by a continuous line.
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Figure 6. The root-mean-square velocity fluctuations normalized by the wall shear
velocity for y* < 200 on various grids.

fit the experiment data nicely, even up to very coarse grids with only 24
grid points in the wall-normal direction. However, the turbulence intensity
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Figure 7. Comparison of the mean-square of the streamwise fluctuating velocity as
function of y*.

in the sublayer (0 < y* < 5) predicted by the simulations is higher than
that in the experiment. According to the fourth-order simulation the root-
mean-square approaches the wall like urms ~ 0.38y™ (N, = 64). The exact
value of this slope is hard to pin-point experimentally. Hanratty et al. (1977)
have fitted experimental data of several investigators, and thus came to 0.3.
Most direct numerical simulations yield higher values. Kim et al. (1987)
and Gilbert and Kleiser (1991) have found slopes of 0.3637 and 0.3824
respectively, which is in close agreecment with the present findings.

So, in conclusion, the results of the fourth-order symmetry-preserving
discretization agree better with the available reference data than those of its
second-order counterpart, and with the fourth-order method a 64 x 64 x 32
grid suffices to perform an accurate DNS of a turbulent channel flow at
Re=5,600.
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