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Abstract.

In this paper a new class of finite difference schemes - the Weighted Com-
pact Schemes are proposed. According to the idea of the WENO schemes,
the Weighted Compact Scheme is constructed by a combination of the
approximations of derivatives on candidate stencils with properly assigned
weights so that the non-oscillatory property is achieved when discontinuities
appear. The primitive function reconstruction method of ENO schemes is
applied to obtain the conservative form of the Weighted Compact Scheme.
This new scheme not only preserves the characteristic of standard com-
pact schemes and achieves high order accuracy and high resolution using a
compact stencil, but also can accurately capture shock waves and discon-
tinuities without oscillation. Numerical examples show the new scheme is
very promising and successful.

1. Introduction

Recently compact schemes have been widely used in the simulation of com-
plex flows, especially in the direct numerical simulation of turbulent flows
(Jiang et al., 1999; Shan et al., 1999; Visbal et al., 1998). Standard finite
difference schemes have explicit forms and need to be at least one point
wider than the desired approximation order. It is also difficult to find suit-
able and stable boundary closure for high order schemes. Compared to the
standard finite difference approximations, the compact schemes can achieve
higher order accuracy without increasing the stencil width. As the compact
schemes have implicit forms and involve derivative values of neighboring
grid points, additional free parameters can be used not only to improve the
accuracy but also to optimize the other properties such as resolution and
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stability. The resolution is the largest wave number that can be accurately
represented by the scheme. Many complex flows possess a large range of
time and space scales. The resolution characteristic of the scheme is essen-
tially important in complex flow simulations. A family of centered compact
schemes proposed by Lele (1992) have been proved to have spectral-like
resolution. Though the advantages of compact schemes are obvious, there
are still difficulties in using them to solve problems involving shock waves
or discontinuities. When they are used to differentiate a discontinuous func-
tion, the computed derivative has grid to grid oscillation. Compact schemes
for filtering are always used together with compact schemes for derivatives
to eliminate numerical oscillations (Jiang et al., 1999; Shan et al., 1999;
Visbal et al., 1998), but even filtering can not reduce oscillations near the
discontinuities. Adams (1996) proposed the hybrid compact-ENO scheme
for shock-turbulent interaction problems, in which the upwind-biased com-
pact schemes are coupled with ENO schemes. A detection algorithm is used
to identify cells containing large gradients, and then the flux derivative at
the faces of such cells is computed with ENO schemes. In this approach,
the detecting procedure is very time consuming.

In the present work, a new class of compact schemes which we call
the Weighted Compact Schemes, are developed. The building blocks of
the Weighted Compact Schemes are the standard compact schemes, which
also have centered and biased forms. The Weighted Compact Scheme is
a hybrid of different forms of standard schemes. The hybrid idea comes
from the WENO schemes (Liu et al., 1994; Jiang et al., 1996). The ENO
(Harten et al., 1987; Shu et al., 1988, 1989) and WENO schemes have been
applied quite extensively in many different fields. Most of the problems in-
volving shocks, discontinuities and rich structures. The success of the ENO
and WENO schemes are so attractive, that the basic methodology inspires
the idea of developing the Weighted Compact Scheme. The ENO schemes
choose the smoothest stencil to pick one interpolating polynomial for the
ENO reconstruction, while the WENO schemes use a convex combination
of interpolating polynomials on all candidate stencils to achieve the essen-
tially non-oscillatory property, at the same time additional one order of
accuracy is obtained. Thus, WENQO schemes remove all the stencil choos-
ing procedures in ENO which is very time consuming. In WENQO schemes
(Jiang et al., 1996), each of the candidate stencils is assigned a weight that
determines the contribution of this stencil to the final approximation of
the numerical flux. The weights are defined in such a way that in smooth
regions it approaches certain optimal weights to achieve a higher order of
accuracy; in regions near discontinuities, the stencils that contain the dis-
continuities are assigned a nearly zero weight. According to this method,
the Weighted Compact Scheme is constructed by the combination of the ap-
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proximations of derivatives on candidate stencils. Here the finite difference
approximations of derivatives are combined together to form a new finite
difference approximation, while in WENO schemes interpolating functions
are combined. The general idea of the Weighted Compact Scheme is the
following, on each candidate stencil, for a given accuracy order, there is a
corresponding finite difference compact scheme. According to the smooth-
ness of each stencil, a weight is assigned to each finite difference approxima-
tion obtained by compact schemes. The hybrid of these standard schemes,
with corresponding weights, forms the new scheme - the Weighted Compact
Scheme. The weights are defined in such a way that the stencils, including
discontinuities, have less contribution to the final scheme. Thus, the oscil-
lations near discontinuities can be avoided, while high order accuracy and
high resolution properties of compact schemes can still be preserved in the
smooth region.

Another problem while using compact schemes is the conservation prop-
crty of the schemes. Conservation property is especially important in solving
problems involving shocks. Nonconservative methods usually generate large
errors near the shock. Lele (1992) developed conservative formulations of
the finite difference compact scheme by constructing the near boundary
schemes in such a way that the discrete form of global conservation is satis-
fied. This approach is applicable when the scheme coefficients are constant.
Davis (1998) applied the primitive function reconstruction method of ENO
schemes to a compact scheme to maintain the conservation. In the present
work, this method is applied with the new scheme to achieve the conserva-
tion.

In section 2 the general idea of the Weighted Compact Scheme is de-
scribed in detail. The method of applying the new scheme in a conservative
form is given. In section 3 we apply the new scheme to solving several
typical equations. The problems involving shocks, discontinuities and fine
structures are simulated. The numerical results are given.

2. Weighted Compact Scheme
2.1. BASIC FORMULATION

For simplicity, we consider a uniform grid. The independent variable at
the node j is ; = h(j — 1) for 1 < j < N and the function value at the
nodes f; = f(z;) is given. The finite difference approximation f]f to the first
derivative of the function f on the nodes can be written in the following
general form while the finite difference compact scheme (Lele, 1992) is used.

B-fi—ata_fiy+ fi+arfi+B+fie
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= %(b—fj—z +a_fi—1+cfjtarfiv+bifiv2) (1)

For a given point j, three candidate stencils containing this point are
defined as follows:

So = (%j-2,%j-1,2j), S1 = (%j-1,%j,Tj+1), S2 = (Tj,Tj11,Tjt2)

On each stencil a finite difference compact scheme is derived in the form
of Eq.(1) by matching the Taylor series coefficients to various orders. When
the following coefficients are used:

So: B-=9,a-=20+2,b_=-39~1 a_=29-2 c=39+5;
Sy a—=%7a+=%aa—=—%aa+=%aC=0; (2)
Sp: By=9, 0y =20+2,by=30+1% a1 =-20+2 c=-19-3

where ¥ is a free parameter. In this work, we set 9 = 0 to get a tridi-
agonal form. This parameter can also be used to improve the accuracy or
optimize the scheme. The sacrifice would be increase the computer time.
Those coefficients which are not listed are set to zero. Then, the schemes
corresponding to stencils Syp and S are third order one-sided finite dif-
ference schemes, and the scheme corresponding to S; is a fourth order
centered scheme. As compact schemes have implicit forms, each scheme is
represented by an equation in the form of Eq.(1) with coefficients defined
in (3) . These three equations are denoted as Fy, Fj, Fy. Then a specific
weight is assigned to each equation, and a new scheme is obtained by a
summation of the equations.

F =CyFy+ C1F1 + CoF» (3)

where, Cy, C), Cy are weights and satisfy Co + C; + Cy = 1. If the
weights are properly chosen, the new scheme can achieve a higher order
accuracy because the additional free parameters are introduced. If we set:

1 8 —12¢
§-2a9° O'T9-129 )

the new scheme given by Eq. (3) is at least a sixth order centered com-
pact scheme. The procedure described above implies that the sixth order
centered compact scheme can be represented by a combination of three
lower order schemes.

Obviously, the scheme F' is a standard finite difference compact scheme
and cannot avoid the oscillation near discontinuities. In order to achieve
non-oscillatory property, the method of the WENO scheme (Jiang et al.,

Co=Ch=
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1996) is introduced to determine the new weight for each stencil. The
weights are determined according to the smoothness of the function on
each stencil. Following the WENO method, the new weights are defined as
(Jiang et al., 1996):

Vi Gy
?:0 Vi Tk = (e + IS;)P (5)

where ¢ is a small positive number which is used to prevent the denom-
inator becoming zero. p is an important parameter to control the weight.
At present time, it is set as a constant. ISy is the smoothness measurement
which is defined according to WENO (Jiang et al., 1996):

Wi =

IS0 = To(f52= 21+ FV+ 3 Uis —4fj1 +36)

1
IS, = %(fj~1 ~2fi+ fir)* + gfim1 - fi+1)? (6)
1S, = %(fj —2fj41+ fir2)* + %(fm —4fjn +355)°

where, the two terms on the right side can be regarded as the mea-
surements of the curvature and the slope respectively at a certain point.
Through the Taylor expansion, it can be easily proved that in smooth re-
gions new weights w;, satisfy:

wr = Cr + O(h?) and wy — wy = O(A3). (7)

The new scheme is then formed using these new weights:

F =wyFy + w F1 + wo Fy. (8)

The leading error of F' is also a combination of the errors of the original
schemes F;, which is as following:

1 1

(i%wo — Iléwg)f(‘l)h?’ + (—Igwo + Tog%t ~ Il—ng)f(‘r’)h‘l. 9)

When Eq. (7) is satisfied, the leading error of the new scheme can be
written as O(h®). Obviously, this new scheme is of sixth-order accuracy
and has the high resolution property as the centered sixth-order compact
scheme in smooth regions. But in the regions containing discontinuities, the
smoothness measurement ISy of the non-smooth stencil is large compared
to that of the smooth stencil, thus the non-smooth stencil is assigned a
-small weight and have less contribution to the final scheme so that the

non-oscillatory property is achieved.
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With the new weights wy, the new finite difference compact scheme Eq.

(8) is written in the form of Eq. (1). The coefficients of the final Weighted
Compact Scheme are given as follows:

1
B = duwo, o = (20 +2)wo + w1,

1
ot = (29 + 2)ws + ~w1, B- = Jwy,

4
5 1 3
b= (=50 — e, - = (20 = 2Juwo — Jun,
1 5 1 5
c= ('2'79 + 5)‘-‘-’0 - (5’(9 + §)w2,
ay = (=29 + 2)w +—3-w b —(§0+l)
+ 2t 7w 0+ =15 3wz

As wy, is dependent on the smoothness measurement calculated by lo-
cal function values, the scheme coefficients are various from point to point.
The free parameter ¢ can be used to optimize the scheme when the prop-
erties of high resolution, and stability are concerned. If ¢ = 0, the scheme
is tridiagonal. Though in the above description the sixth-order Weighted
Compact Scheme is selected as an example, the method can be extended
to a general form.

2.2. CONSERVATIVE FORMULATION

The conservation property of the scheme is very important in shock wave
capturing, since it imposes a constraint on the solution error. In the work
of Davis (1998), the reconstruction method developed by Shu and Osher
(1989) for the ENO scheme was used together with the Pade scheme to
achieve the conservation. As we already mentioned in the previous section,
the coefficients of our new scheme are not constant. So the finite difference
scheme itself is not conservative. However, conservation can be obtained
when the Weighted Compact Scheme is applied together with ENO recon-
struction method. Below, we give the description of this method. For 1-D
conservation laws:

uy(z,1) + fa(u(z,t)) = 0. (10)

When a conservative approximation to the spatial derivative is applied,
a semi-discrete conservative form of Eq. (10) is as follows:

de 1 7 A .
G = "2z iy = fimy), (1
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fj +1 and fj_ 1 are numerical flux functions at the cell interfaces. Az is
the grid size of the uniform grid. In order to achieve the high order accuracy,
the numerical flux should be defined in such a way that the difference
of the numerical flux is a high order approximation of the derivative f,.
According to the ENO reconstruction procedure (Shu et al., 1989), it has
been approved that the primitive function of f at the cell interfaces can
be exactly calculated by the given point values f;. If H is the primitive

function of f, then:

j
H(z;, 1) = Az > fi (12)

i=—00

Obviously, the numerical flux f at the cell interfaces is the derivative of
its primitive function H. i.e:

=H

fray =y (13

As the values of the function H have already been obtained at the cell
interfaces, the approximations of the derivatives of H at the cell interfaces
are calculated directly by the Weighted Compact Scheme presented in Sec-
tion 1. Thus, the Weighted Compact Scheme is applied to the primitive
function instead of the function itself. In this way, the conservation prop-
erty is achieved.

3. Numerical Examples

The prospects of the Weighted Compact Scheme can be seen from our
applications of the tridiagonal sixth-order scheme described in section 1
to some model equations and test examples. According to our experience,
when the reconstruction method is adopted, the function f in Eq.(10) is
used to define the smoothness ISy instead of using primitive function H.
The parameter p in Eq. (5) is set as p = 1. For all of the following examples,
the fourth order Runge-Kutta scheme (Shu et al., 1988) is used for time
integration.

3.1. CONVECTION EQUATION

We first solve the one-dimensional convection equation with several initial
functions.

up + uy = 0, -1<z<1 (14)
u(z,0) = up(z), periodic with a period of 2.
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N Lo error Lo order Lj error L3 order

20 4.39E-5 1.19E-5
40 1.05E-6 5.38 2.37E-7 5.64
80 2.70E-8 5.28 4.23E-9 5.81

160  5.94E-10 5.50 6.35E-11 6.05
320 1.14E-11 5.70 7.15E-13 6.47

TABLE 1. Errors of the numerical solution with
uo(x) = sin(wz) at t = 1, Weighted Compact Scheme

N L error Lo order L; error L; order

20 1.48E-5 9.46E-6
40 2.26E-7 6.03 1.44E-7 6.02
80 3.57E-9 5.98 2.27E-9 5.98

160 5.88E-11 5.92 3.74E-11 5.92
320 1.07"E-12 5.78 5.73E-13 6.02

TABLE 2. Errors of the numerical solution with
uo(z) = sin(mwz) at t = 1, Standard Compact Scheme

The first initial function is ug(z) = sin(nz). The second one is ug(z) =
sin*(mz). The Ly and Lo, errors are listed in Table 1 to Table 3. N is the
number of grid points. Table 1 and 2 are the results for the first initial func-
tion and are obtained respectively by the Weighted Compact Scheme and
the standard compact scheme. This data shows that the Weighted Com-
pact Scheme is capable of achieving sixth-order accuracy as the standard
compact scheme. Table 3 lists the result for the second initial function.
Compared to the results (Jiang et al., 1996) obtained by WENQ scheme,
this Weighted Compact Scheme achieves higher order accuracy with the
same stencils.

The third to fifth initial functions are:

1 _1 <z < L.
— ’ 5 = =5
(3) ug(x) { 0, otherwise,
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N Ly error Lo, order Ly error  Lj order

20 3.73E-2 1.16E-2

40 4.54E-3 3.03 1.17E-3 3.31
80 5.37E-4 3.07 5.54E-5 4.04
160  7.08E-6 6.25 7.98E-7 6.12
320 4.84E-8 7.19 6.99E-9 5.98
640 2.65E-10 7.51 7.61E-11 6.52

TABLE 3. Errors of the numerical solution with
uo(z) = sint(nz) at t = 1

1
10,.y2] 2 3 3.
[1”(7@] y T10 ST < g5
0, otherwise,

(5) uolz) = ¢ 3002%

Figure 1 is the result of the standard compact scheme for the initial func-
tion (3). The solution is scriously damaged by wiggles generated near the
discontinuities. Figures 2-4 illustrate the results obtained by the Weighted
Compact Scheme for initial functions (3), (4), and (5). There is no obvious
numerical oscillation observed in the regions near the discontinuities, and
good resolution has been achieved.

3.2. BURGERS’ EQUATION

The Weighted Compact Scheme is applied to the nonlinear Burgers’ equa-
tion. With the given initial condition, the exact solution will develop to a
moving shock wave.

1
ug + (—2-u2)m =0, ~1<z<1 (15)
1
u(z,0) = 3 + sin(nz), periodic with a period of 2.
At t = 0.15 the solution is still smooth. The Lo, and L; errors are

listed in Table 4. The scheme also has about sixth-order accuracy for the
nonlinear problem.
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Figure 4. The solution at t = 0.5

N Lo error Lo order

Ly error  L; order

80 4.45E-5
160 1.75E-6
320 4.41E-8

3.63E-6
4.85E-8 6.23
9.49E-10 5.85

TABLE 4. Errors of the numerical solution of Burgers’

equation. t = 0.15
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Fig. 5 and Fig. 6 show the wave at t = 0.3183 and ¢t = 0.55. At ¢t = 0.3183
the wave becomes steep and the shock starts to form. At ¢ = 0.55 the
discontinuity appears and is accurately captured by the scheme without
obvious oscillation.

.8 o ,1"’
Y & L
s §  Exact Soht & 14 e o
. l 1
ersl _J" orst
7 ”
30 /j" 305 1 ff
025 }}’ 225
o s R i e
oz} li /' 026
R B . . .-"'z .
-1 08 0 as B -05 o 08
X x
Figure 5. The solution to the Burgers’ Figure 6. The solution to the Burgers’
equation at ¢ = 0.3138 equation at £ = 0.55

3.3. 1D EULER EQUATION

We apply our scheme to 1D Euler equation of gas dynamics

ou OF
o + B = 0 (16)
U= (p,pu, E)"

F = (pu, puu + p,u(E + p))".

The first example is the typical one-dimensional shock tube problem.
The initial conditions are chosen so that the solution contains a shock,
contact discontinuity and a rarefraction wave. They are given as follows:

v, = { (1L01), z < 0;
=1 (0.125,0,0.1), z >0,

The distributions of pressure, density,velocity and energy are shown in
Fig. 7. The shock wave and contact discontinuity are accurately captured.

The second example is to simulate the interaction between shock wave
and fluctuations. The calculation starts with the initial field as follows:

o — [ (3.857143,2.620369,10.33333), = < —4;
71 (1+40.25in(52),0,1), T > —4.
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Figure 7. The solutions to the shock-tube problem at ¢ = 2, N = 100

In this example, the shock is moving into a density fluctuation field and
interacts with the fluctuation. This problem requires non-oscillatory scheme
with high resolution to resolve the fine structures. In Fig. 8, the solid line
represents the numerical solution obtained using the present scheme with
a fine grid of N = 1600. This is regarded as the exact solution. The results
obtained with N = 400 compared well with the exact solution. These results
show that the present schemes are capable of resolving fine structures with
high frequency. No serious oscillation appears near the shock area.

3.4. 2D EULER EQUATION

Finally, we apply the Weighted Compact Scheme to investigate a 2D shock-
turbulence interaction problem(Adams,1996; Shu,1989). 2D Euler equa-
tions are written as

oU  OF 3G _

Tt ey " (17)
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Figure 8. The solutions to the shock-fluctuation interaction problem at ¢ = 1.8, N = 400
U = (p, pu, pv, B)”
F = (pu, puu + p, puv, u(E + p))”
G = (pu, pvu, pvv + p,v(E + p))”

where F = J%T + %p(u2 + v2?). The computational domain is given by
-15 <z <15, -1 <y < 1. At time t = 0, a Mach 8 shock at z = —1
is moving in the positive x direction into a vorticity fluctuation field. The
initial condition for pre-shock field is specified with vorticity fluctuation as

w1 = —cysinfcos(rkcosh + yksin)
v1 = cjcos8cos(zkeosd + yksing)
p1=1

pr=1
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where ¢, is the speed of sound, ¥ = 27, § = %. The initial post-shock
state can be derived from shock relations.

2(MZ - 1)
—Ug
(v + 1) M2
Vg = O
v+ 1)ME
2y(MZ2-1)
¥+1

where u; = M;c, is the shock propagation velocity, and M; is the shock
Mach number.

Fig.3.4-3.4 display the results obtained on different grids. The shock
front is clearly shown by the pressure contour lines. After the vorticity fluc-
tuations strike the shock, the shock front develops ripples and the vorticity
fluctuations are amplified. The results are similar compared with those ob-
tained by Shu (1989) and Adams (1996). This example shows again that
the Weighted Compact Scheme can be used for shock-turbulence interac-
tion problems.

Uy =

pr=(1+ )1

4. Conclusions

The conservative Weighted Compact Scheme developed in this work has
been successfully applied to several one dimensional typical problems in-
volving discontinuities, shock waves, and shock-fluctuation interaction. High
order accuracy, high resolution, and non-oscillation are achieved by us-
ing compact stencil. This new scheme will be further applied to multi-
dimensional flows with shock-turbulence interactions.
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