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H. SHAN, L. JIANG, C. LIU
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Abstract.

The three-dimensional separated flow around a slender flat-plate delta
wing with sharp leading-edge at a 12.5' angle of attack has been studied
by solving the full compressible Navier-Stokes equations in the generalized
curvilinear coordinates. The time integration is carried out by using the
second-order LU-SGS implicit scheme. A fourth-order centered compact
difference scheme is used for spatial derivatives. A sixth-order implicit fil-
ter is employed to reduce numerical oscillation. Non-reflecting boundary
conditions are imposed at the far-field and outlet boundaries to avoid pos-
sible non-physical wave reflection. Parallel computing based on Message
Passing Interface (MPI) has been utilized to improve the performance of
the code.

Two Reynolds numbers have been selected. At a lower Reynolds number
of 5 x 104 based on the chord length and the freestream velocity, the flow
is stable and dominated by a pair of leading-edge primary vortices. At a
higher Reynolds number of 1.96 x 105, the small-scale vortex shedding is
observed near the leading-edge of the delta wing. The computational results
are compared with the experimental work of Riley & Lowson (1998). The
periodic shedding of small-scale vortical structures near the leading-edge
has been studied in detail, and the vortex shedding is found to be associated
with the Kelvin-Helmholtz-type instability and the secondary vortex. The
period of vortex shedding is obtained from the time series of the three
velocity components recorded near the leading-edge. The time-averaged
features of the vortical structures are also discussed.
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1. Introduction

Recent developments in aerospace technology have revived the interest to
the study of flow separations around an aircraft maneuvering dynamic op-
erations. Understanding of the complex separated vortical flow is crucial
to the aerodynamic design of modern aircraft. Vortical structures, which
develop over the leading-edge extension, slender fore-body, and main wing,
may have severe effect on the aerodynamic characteristics and performance
of modern fighter aircraft.

A flat-plate delta wing with sharp leading-edge provides a simple con-
figuration to investigate the development of the vortical structures. The
experimental study of delta wing started in the early 1950's. The experi-
mental results have shown that the flow over the suction side of a delta wing
at a high angle of attack is dominated by a pair of counter-rotating vortices,
i.e. the leading-edge primary vortices. These vortices are formed as a result
of the rolling-up of the vortex sheet shedding from the leading-edge. The
flow induced by the leading-edge vortices separates near the wing surface
and forms a pair of oppositely rotating secondary vortices. At large sweep
angle, the size and strength of the leading-edge vortices increase with the
angle of incidence, resulting in a substantial nonlinear lift increment, some-
times called vortical lift. But the maximum lift of a delta wing is limited
by a phenomenon known as vortex breakdown(Visser & Nelson 1993).

The breakdown of the primary vortex has drawn considerable atten-
tions. Payne et al. (1988) used smoke flow visualization and laser sheet
technique to study the vortical flow field above the delta wing at high
angles of attack. Two types of vortex breakdown were testified, i.e. the
bubble mode and the spiral mode. However, as it was pointed by Rieley
& Lowson (1998), most studies have been concentrated on the nature and
breakdown of the primary vortex instead of the leading-edge shear layer
itself. Actually, there are several mechanisms associated with the leading-
edge shear layer. The most obvious one is the Kelvin-Helmholtz instability
of two-dimensional free shear layer. Two types of instabilities are observed
in experiments, i.e. the unsteady, and steady instability. The experimental
study carried out by Gad-el-Hak and Blackwelder (1985) using dye visual-
ization has shown the unsteady instability, where small-scale vortices are
shed from the leading-edge, travel up and around the shear layer, and fi-
nally feed into the core of large-scale leading-edge vortex. The pairing of
the small-scale vortices were observed in the same experiment. The expe-
riential observation of the pairing of Kelvin-Helmholtz type vortex during
flow separation around a delta wing was confirmed by Lowson (1988). Sim-
ilar phenomenon has been reported in a simple tow-dimensional shear layer
(Winant & Browand, 1974). It is generally found that the phenomena as-
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sociated with the traveling Kelvin-Helmholtz instability in strongly curved
shear layer are parallel to the effects observed in a two-dimensional free
shear layer. The experiments also indicate that the unsteady instability is
exceptionally sensitive to external disturbance. The steady instability was
observed in the experiment of Payne et al. (1988). The static small-scale
vortical-like structures were found in the shear layer of a delta wing with a
85' sweep angle and at 400 angle of attack. The growth of these structures
was found to be similar to the evolution of the classic Kelvin-Helmholtz in-
stability. In this experiment, the pairing of the small-scale vortices was not
observed. The stationary cellular substructures that do not rotate around
the primary vortex were also observed by Honkan & Andreopoulos (1997)
in their experiment. The recent experimental work of Rieley & Lowson
(1998) revealed, using flow visualization and laser Doppler anemometer
measurement, the existence of static small vortical structures in the free
shear layer shedding from the sharp leading-edge of a delta wing. A lo-
cal three-dimensional Kelvin-Helmholtz-type instability was suggested by
the authors for the formation of these vortical structures in the free shear
layer. Similar vortical structures were also observed in the investigations
of Cipolla & Rockwell (1998), where small-scale concentrations of vorticity
form near the leading-edge of a rolling delta wing. These vortices appear
to evolve in a coupled fashion, which has been considered as the wake-like
instability.

Numerical simulations of vortex breakdown above a stationary sharp
edged delta wing over a range of angles of attack were carried out by Modi-
ano & Murman (1994). Their computation was based on an Euler solver
with adaptive mesh system. The spiral form of vortex breakdown was ob-
served without the emergence of the small-scale vortical structures inside
the shear layer. In the numerical investigation by Argwal et al. (1992),
the well-known Euler/Navier-Stokes code CFL3D was used to simulate the
leading-edge vortex breakdown of a low-speed flow on a flat-plate delta
wing with sharp leading-edges. Although the vortex breakdown positions
obtained from the computation were reported in good agreement with ex-
perimental data, the small-scale vortices were not observed, which could be
attributed to the lack of numerical resolution/accuracy. A numerical inves-
tigation of the unsteady vortex structure over a 76' sweep wing at 20.50
angle of attack was carried out by Gordnier & Visbal (1994). Their numer-
ical calculation indicated that the small-scale vortical structures emanated
from the leading-edge was brought on by the Kelvin-Helmholtz-type insta-
bility. Pairing of the small vortices was not observed in the computational
results. No computational result has indicated the existence of the steady
instability.

The intend of present work is to study the mechanism of the shear layer
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instability of a slender flat-plate delta wing with sharp leading-edges at a
fixed angle of attack. High-resolution numerical simulation is employed to
give a detailed description of flow instability and vortex shedding near the
leading-edge of the delta wing. The interactions between the small-scale
vortical structures and the primary vortex is also studied.

2. Governing Equations

The three-dimensional compressible Navier-Stokes equations in generalized
curvilinear coordinates (ý, 7, () are written in conservative forms:

I 'Q +O(E - E) +O(F - F) +a(G - G,) _
+j 57 + 9 +(

The flux vectors are

p ( pU pV
Pu 1 pUu + p6 1 pVu + P77

Q = P E pUv + pWy F pVv + P77y
pw pUw + PG pVw + P7z
e U(e + p) v(e + p)

1 + 1 PX TxX + Tyx~y + Tzxz
G - pWv + pCy -E Txyx + Tyy6y + TzyGz

+ PWW+ Iz TxzG + Tyz6y + Tzz6z
W(e+p) qx~x + qy'y + qz~z

F = -• XyZ + TyXY + rTzyz G -1 Txyx + TyyXy + TZy(z

Txz?7x + T'yz?ly + TzzT/z TXZ(X + TYzXY+ TzZqx?7x + qyily + qzrqlz qx~x + qy~y +- qz~z

where J is Jacobian of the coordinate transformation, and 6, 6y, 6z)?7X,?,7?Z,¢X,
(y,(z are coordinate transformation metrics. Tkj's and qk's are the viscous
stress and the heat flux, respectively.

In Eq. (1), a second order Euler Backward scheme is used for time
derivatives, and the fully implicit form of the discretized equations is given
by

3Qn+l - 4Qn + Qn- 1 +9(En+' - E•+l)

2JAt a6
a(Fn+l - F•+') o(Gn+l _ 0v+l)

+ =q + a(0
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(2)

Qn+l is estimated iteratively as:

Qn+1 = QP + 6Qp (3)

where,
6QP = QP+l _ QP (4)

At step p = 0, QP = Qn; as 6QP is driven to zero, QP approaches Qn+1.
The flux vectors are linearized as follows:

En+1 . EP + AP6QP

Fn+l FP + BP6Qp (5)

G n+•GP + Cp6Qp

So that Eq. (2) can be written as:

[31 + AtJ(D•A + D,?B + D(C)]1QP = R (6)

where R is the residual:

R -(• QP-2Qfn +1 Qn-l)_AtJ[(D,(EEv)+Dv(FF,)+Dc(GGv)]p

(7)
Dý, D?, D( represent partial differential operators, and A, B, C are the
Jacobian matrices of flux vectors:

OE OF 0G
A oQ' B Q' C OQ (8)

The right hand side of Eq. (6) is discretized using fourth-order compact
scheme (Lele, 1992) for spatial derivatives, and the left hand side of the
equation is discretized following LU-SGS method (Yoon & Kwak, 1992). In
this method, the Jacobian matrices of flux vectors are split as:

A A+ +A-, B = B+ + B-, C =C+ + C-

where,

A±= -[A rAI], B' = _[B ±rBI], C = - [C=±rcI] (9)

and,

rA ==max[IA(A)j]+v, rB = nmax[IA(B)I]+i;, rc = nmax[IA(C)Q]+;
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where A(A), A(B), A(C) are eigenvalues of A, B, C respectively, n is a con-
stant greater than 1. F; is taken into account for the effects of viscous terms,
and the following expression is used:

F = max[( 4
- 1)M,2ReP' 3 Re

The first-order upwind finite difference scheme is used for the split flux
terms in the left hand side of Eq. (6). This does not effect the accuracy of
the scheme. As the left hand side is driven to zero, the discretization error
will also be driven to zero. The finite difference representation of Eq. (6)
can be written as:

[ I + AtJ(rA + rB + rc)I]QPRJ,kz =~ Ri,j,kp
-AtJ [ -6P + Pj~

[A6Q'i+l,j,k - A 6Qi-l,j,k

"+ B-6Qj+l,k - B+6Qzj-l,k
+C6QP - C~bQ] (10)tQ,j,k+1 ] (10)

In LU-SGS scheme, Eq. (10) is solved by three steps. First initialize 6Q°
using

Qi, 3,k = [-I + AtJ(rA + rB + rc)I]'RiJ,k

In the second step, the following relation is used:

=Q 3 + 1 + AtJ(rA + rB + rc)I]-1*~~ --- 6Qi,j-,k -- [I+ + 2B

x[AtJ(A+6Q*_l,j,k + B+6Q*,jI,k + C+6Q*,j,k-I)]

For the last step, 6QP is obtained by

,j= Q - [ I + AtJ(rA + rB + rc)]- 1

×[AtJ(A- QP+Ij,k + BQ- P + CB+ iQijlk -C QP,jkl)

The sweeping of the computational domain is performed along the
planes of i + j + k = const, i.e. in the second step, sweeping is from the
low-left corner of the grid to the high-right corner, and then vice versa in
the third step.

In order to depress numerical oscillation caused by central difference
scheme, a spatial filtering is used instead of artificial dissipation. Implicit
sixth-order compact scheme for space filtering (Lele, 1992) is applied for
primitive variables u, v, w, p,p after each time step.
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For subsonic flow, u, v, w, T are prescribed at the inflow boundary, p
is obtained by solving modified N-S equation based oil the characteristic
analysis. 01 the far field and out flow boundary, non-reflecting boundary
conditions are applied. Adiabatic, non-slipping conditions are used for the
wall boundary. All equations of boundary conditions are solved implicitly
with internal points. Specific details of boundary treatment can be found
in Jiang et al (1999).

3. Computational Details

Numerical simulation has been implemented to investigate the compressible
flow separation around a slender delta wing. The geometry of the delta
wing, taken from the experimental work of Rieley & Lowson (1998), is
shown in Figure 1. The sweep angle denoted by A is 850 and the leading-edge
angle denoted by a is 300. The chord length is taken as the characteristic
length L, such that the non-dimensional chord length is c = 1.OL. The
non-dimensional thickness of the delta wing is h = 0.024L. The freestream
velocity Uo, is the characteristic velocity.

~j

Figure 1. Schematic of the delta wing Figure 2. H-C type grid around a 85'
sweep delta wing

3.1. GRID GENERATION

An H-C type mesh system for a half-plane model of the delta wing is used
based on the assumption that the flow is symmetrical to the the half-plane.
The mesh is H-type in the meridian section and C-type in the cross section.
An elliptic grid generation method, first proposed by Spekreijse (1995), is
used to generate the three-dimensional grids. This method is based on a
composite mapping, which is consisted of a nonlinear transfinite algebraic
transformation and an elliptic transformation. The grids are orthogonal on
the delta wing surface. The sharp leading-edge is approximated by a round
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edge with a small radius of 1.0 x 10- 3L, while in the experiment of Rieley
& Lowson (1998), the average thickness of the leading-edge was 0.12 mm,
which was approximately 2.55 x 10-4L. Computations are carried out on
three meshes, i.e. one lower resolution mesh with 140 x 70 x 70 grid nodes and
two higher resolution meshes with 180 x 150 x 70, and 180 x 250 x 120 grid
nodes, where the three numbers Ný, Nn, N( in the sequence Ný x N, x N(
are corresponding to grid numbers in ý, 77, and c directions of the com-
putational domain. In the physical domain, the 7, 7, and ( directions are
approximately corresponding to the axial, azimuthal, and wall-normal di-
rections, respectively. An example of the three-dimensional grid is displayed
in Figure 2, where only the grids of inflow- and outflow boundaries, and
the far field are displayed.

3.2. PARALLEL COMPUTING

The parallel version of the numerical simulation code based on the Message
Passing Interface (MPI) has been developed to improve the performance.
The parallel computing is combined with domain decomposition method.
The computational domain is divided into n equal-sized subdomains along
the ý direction as shown in Figure 3, where n is the number of processors.
This is a simple partition with a balanced load for each processor. During
computation, a processor communicates with it neighbors through exchang-
ing the data at left and right boundary of each subdomain. But this type of
communication is not suitable for calculating derivative in the ý direction
while using the compact finite difference scheme. If each grid node along a
grid line locates in the same processor, it will be straightforward to use the
compact scheme. In Figure 4, a data structure with four processors is used
as an example to illustrate a special type of data exchange which has been
utilized to accomplish the data structure transformation. The top figure
shows the original partition where the computational domain is divided
along the ý direction. This data structure can be transformed to a new
structure shown in the bottom figure where the domain is divided along
the ( direction. The transformation is accomplished by first defining two
new data types and then calling a MPI routine "MPIALLTOALL" from
the MPI library. In the new data structure, all the grid nodes along a ý grid
line are stored in one processor. After the calculation of derivative is com-
pleted, an inverse transformation is used to the transfer the data structure
back to original partition.

A test case has been used to evaluate the performance of the MPI code
to calculate the derivatives in the ý, 7, and ( directions on a 480 x 160 x 80
grid. The performance of a parallel computing is measured by the speedup
S(n, p) which is defined as the ratio of the runtime of a serial program to the
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p 0 1 2 3 n-1

Figure 3. The domain decomposition along ý direction in the computational space

p. 0 1 2 3

Figure 4. The change of data structure for calculating derivative in • direction using
the compact scheme.

runtime of the parallel program. In Figure 5, the speedups on a SGI Origin
2000 computer are displayed as a function of the number of processors.
The dashed line represents the linear speedup. Super-linear performance
has been achieved to calculate derivatives in the qj, and ( directions where
no data exchange is required. In the ý direction, the speedup is much lower
because of the massive data exchange in the data structure transformation
introduced above.

Next, the total performance of the MPI code to simulate the flow around
the delta wing has been tested and compared with the serial code compiled
using the automatic parallelization option provided by SGI MIPSpro 7
Fortran 90 compiler. The comparison is displayed in Figure 6, where the
performance of the parallel code running on 4, 6, and 15 processors is much
better than the serial code. For the parallel simulation of flows around the
delta wing, 10 processors have been used on a grid of 180 x 150 x 70 and
12 processors have been used on a 180 x 250 x 120 grid.

4. Results and Discussions

4.1. GENERAL FEATURES

All results presented here are obtained from numerical simulation of flow
around a 85' sweep delta wing with a flat-plate suction surface, which has
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Figure 5. Speedup S(n,p) of calcula- Figure 6. Speedup S(n,p) of parallel
tion of derivatives in ý, 71, and C direc- computing using MPI compared with
tions. using automatic parallelization

been introduced in Section 3. The angle of attack is fixed at 12.50. The
free-stream Mach number is Ma = 0.1.

The numerical simulation of three cases has been carried out. In case 1,
the Reynolds number based on the chord length and the free-stream velocity
is Rec = 5 x 104. The number of grid is 140 x 70 x 70. In case 2 and 3, the
Reynolds number is Rec = 1.96 X 105 . The grid numbers are 180 x 150 x 70
for case 2 and 180 x 250 x 120 for case 3. No initial or boundary disturbance
are imposed for all three cases. Therefore, the dependence of the instability
to the external disturbance has not been covered in the current work.

4.1.1. Case 1
The flow is stable at Rec = 5 x 104. The contours of the axial vorticity on
selected cross sections are displayed in Figure 7. It is quite clear that a pair
of counter-rotating vortices, so called the leading-edge primary vortices,
appears over the suction side of the delta wing. These vortices form as a
result of flow separation and the rolling-up of the vortex sheet shedding
from the leading-edge. The primary vortices are steady and stable at this
Reynolds number. The primary vortices are composed of a pair of counter-
rotating oblique vortex tubes starting from the apex of delta wing, from
a three-dimensional point of view. Beneath the primary vortices, near the
suction surface of the delta wing, the secondary vortices, which have an
opposite rotating direction to the primary vortices, are formed as a result
of the spanwise outflow induced by the primary vortex. Figure 8 shows
the iso-surface of the instantaneous axial vorticity above the suction sur-
face the delta wing. The computational results are in good agreement with
the experimental results of Riley & Lowson (1998). During the computa-
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tion for the high Reynolds number case, the flow becomes unsteady and
small-scale vortical structures keep shedding from the leading-edge. In the
experiment of Riley & Lowson (1998), flow instability was observed when

the Reynolds number was raised above Re, = 100,000. In order to study

the flow instability near the leading edge, the numerical simulations with
higher resolutions and a higher Reynolds number have been conducted, the

results are discussed in next sections.

The IP1dng-069,e

The 7'qc'e1dory vrqt,te

Figure 7. Contours of the axial vor- Figure 8. Iso-surface of axial vortic-
ticity on selected cross sections, angle ity above the suction surface of a 850
of attack a = 12.5', Re = 5 x 10', sweep delta wing at an angle of attack
Ma = 0.1 a= 12.5', Re = 5 x , Ma = 0.1

4.1.2. Case 2
At a higher Reynolds number, i.e. Rec = 1.96 x 105 , flow instability oc-

curs near the leading edge of the delta wing. In order to capture the small
vortical structures observed in the experiment, the numerical simulation is

accomplished on a 180 x 150 x 70 grid which has a higher resolution. Dur-

ing the simulation, flow instability and periodic shedding of small vortical
structures from the leading edge are observed. Since there is no distur-
bance imposed as the initial or boundary condition for the computation,

the unstable behavior presented by the flow in the computational results
are rather intrinsic.

The distributions of the instantaneous axial vorticity on various cross

section are shown in Figure 9. Compared with the low Reynolds number

results of Figure 7, the flow is still dominated by a pair of primary vortices.
But instability appears at the leading-edge of delta wing, where vortex

shedding is observed. On the suction surface near the leading-edge, the
secondary vortices are still visible in this figure.

In Figure 10 the contours of axial vorticity at different time on a cross

section at x = 0.88L are displayed through (a) to (h), each frame is cor-
responding to a snapshot of a two-dimensional flow field at a certain time.
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Figure 9. The instantaneous distributions of the axial vorticity on various cross sections.
Angle of attack a = 12.50, Re = 1.96 x 105, Ma = 0.1

Flow instability is quite obvious in these figures. The primary vortex de-
forms compared to the low Reynolds number case. The flow pattern inside
the primary vortex resembles that of the spiral instability mode, which
presented occasionally in the experiment of Rieley & Lowson(1998). Two
strong shear layers are visible in Figure 10 through the concentration of
axial vorticity contours. The first one is the leading-edge shear layer whose
axial vorticity is positive (shown in light color in Figure 10), which wraps
the leading-edge corner from below and feeds into the primary vortex. The
other one lies between the primary vortex and the suction surface of the
delta wing and has a negative axial vorticity (shown in dark color in Fig-
ure 10), which is associated with the secondary vortex. Therefore, the shear
layer below the primary vortex is also called the secondary shear layer. As it
will be discussed later, both the leading-edge shear layer and the secondary
shear layers are related to the instability and vortex shedding process near
the leading-edge.

Among the small-scale vortical structures shedding from the leading-
edge, there are two types of vortices, distinguished by the direction of
rotation or by the sign of axial vorticity. Those vortices whose rotating
direction is the same as the primary vortex are named as the A-family
vortices, which are corresponding to a positive axial vorticity component.
The vortices rotating in the opposite direction as the primary vortex are
called the B-family vortices and have a negative axial vorticity component.
The A-family vortices are stronger than the B-family vortices, which can
be recognized from the contours of the axial vorticity in Figure 10.

In Figure 10(a), a bulge is observed on the leading-edge shear layer. The
bulge grows in size as it moves away from the leading edge, as shown in
Figure 10(b), (c), and (d). This process is corresponding to the generation
and shedding of the A-family vortex. Because the B-family vortices are very
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weak, the shedding process of B-family vortices is not clear in Figure 10.
However, in colored animations (not shown here), the pairing of the A-
family and B-family vortices can be observed. A more detailed study reveals
that the B-family vortex conmes from the shedding of the secondary vortex.
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As it is shown in Figure 10, the grid resolution in the areas far from the
wall is not high enough. In the third case, the resolution has been increased
in this area. The grid number is 180 x 250 x 120. Because the Reynolds
number is the same as the second case, the solution of case 2 has been
interpolated to the mesh of case 3 and used as the initial field.

The contours of the instantaneous axial vorticity on selected cross-
section are displayed in Figure 11. The cross-sectional view of the con-
tours of instantaneous axial vorticity at x = 0.88L is shown in Figure 12.
Small-scale vortical structures are shedding from the leading edge. The
pairing of small-scale vortices rotating in the opposite direction can also be
recognized. Along the outer edge of the primary vortex, the structures are
stretched as they are wrapped into the the vortex core. Compared with case
2, the higher resolution grid has clearly captured the small-scale structures
as well as the phenomenon of vortex stretching. Although the stretched the
vortical structures which can be considered as disturbance, are wrapped
into the primary vortex, the flow in the core area is stable. No breakdown
of the primary vortex has been observed in the computational result.

Figure 11. The instantaneous distri- Figure 12. Cross-sectional view of
butions of the axial vorticity on var- the contours of instantaneous axial vor-
ious cross sections. Angle of attack ticity at x = 0.88L, Angle of attack
a = 12.5', Rec = 1.96x 105, Ma = 0.1. a = 12.50, Rec = 1.96x 105, Ma = 0.1.
The grid is 180 x 250 x 120. The grid is 180 x 250 x 120.

In Figure 13, the limiting streamlines on the suction side of the delta
wing are displayed. The attachment line along the symmetric line of the
delta wing represents the attachment of the primary vortex. The position of
the separation line indicates the location where the secondary vortex rolls
up. The attachment line near the leading edge is cause by the attachment
of the secondary vortex. The computational result agrees well with the
schematic representations of the flow separation over a high swept delta
wing (Delery, 2001). A spatial wandering of the separation line and the
attachment line associated with the secondary vortex is also observed in
the computational results.
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Figure 13. Instantaneous limiting streamline on the suction side of a delta wing. Angle
of attack a = 12.5', Re, = 1.96 x 105, Ma = 0.1. The grid is 180 x 250 x 120.

4.2. VORTEX SHEDDING NEAR THE LEADING-EDGE

Because the small-scale vortical structures are shedding continuously from
the leading-edge, the area near the leading-edge is of particular interest in
present work. The detailed pictures of vortex-shedding near the leading-
edge is shown in Figure 14, where the projected streamline and contours
of axial vorticity of various instance on a cross-section at x = 0.88L are
displayed. Through (a) to (h) in Figure 14, the pattern of projected stream-
line exhibits a periodic feature. Actually, figures (a) to (g) fit in one period
of variation. In Figure 14(a), there is a secondary vortex attaching on
the suction surface of delta wing. The strong leading-edge shear layer is
shown by dark color of the contours of axial vorticity. Near the leading-
edge, the shear layer is concentrated in a narrow area. In Figure 14(b),
at t = 55.68L/Um, a small vortex shown by the projected streamline ap-
pears near the leading-edge over the free shear layer. In the same picture,
a small bulge appears on the shear layer. The generation of this small vor-
tex can be attributed to the Kelvin-Helmholtz instability. Therefore, the
small vortex is named as the Kelvin-Helmholtz (K-H) type vortex. At the
same time, the secondary vortex, which was attaching on the wing surface
at t = 55.54L/Um, moves away from the wall. As the K-H type vortex
grows, the secondary vortex is pushed further away from the wall. From
t = 55.81L/Uoo to t = 55.95L/Um, (Figure 14(c) to (d)) the secondary
vortex moves upward and begins to separate from the wall, which is cor-
responding to the B-family vortex, whose rotating direction is opposite to
the primary vortex. Therefore, the B-family vortex comes from the shed-
ding of the secondary vortex. The generation of the leading-edge K-H type
vortex also causes the deformation of the shear layer, which is visible from
the contours of the axial vorticity in Figure 14(b), (c), and (d). The bulge
on the contours of axial vorticity is corresponding to the K-H type vortex.
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In Figure 14(d), the secondary vortex almost disappears and the K-H type
vortex is still attached to the leading-edge. In Figure 14(e) and (f), the K-H
type vortex grows in size until it reaches the edge of the primary vortex.
Another vortex appears at the same location of the secondary vortex, ac-
tually it is a new secondary vortex. The K-H type vortex gradually moves
upward and sheds from the leading-edge, and comes out to be the A-family
vortex, whose rotating direction is the same as the primary vortex. It is
obviously that the A-family vortex originates from the K-H type leading-
edge vortex. The last two frames axe the periodic repeating of frames (a)
and (b) in Figure 14.

The vortex-shedding near the leading-edge is a periodic process. The
interaction between the secondary vortex and the leading-edge shear layer
generates a K-H type vortex. As this K-H type vortex grows, the induced
flow pushes the secondary vortex away form the wall, and ultimately leads
to the shedding of the B-family vortex. The K-H type vortex grows in size
as the secondary vortex shows up again near the wall. The induced flow
pushes the K-H type vortex away form the wall and leads to the shedding
of the A-family vortex. So the A-family vortex originates from the Kelvin-
Helmholtz instability of shear flow near the leading-edge. The B-family
vortex originates from the secondary vortex. The period of vortex shedding
is between 0.89L/Uoo and 0.98L/Uco. The scale of the K-H type leading-
edge vortex and the secondary vortex is about 0.005L.

The interpretation of the above phenomena is based on the Kelvin-
Helmholtz instability of cross-sectional two-dimensional flow. Considering
many cross-sections simultaneously, the period of vortex shedding is the
same, there is only phase difference between one cross-section and the other.
From a three-dimensional point of view, the A- and B-family vortices be-
come vortex tubes, which are oblique to the axial direction.

The time series of three components of the instantaneous velocity at a
location near the leading-edge (x = 0.88L, y = 0.076L, z = 0.0094L) are
recorded and shown in Figure 15, 16, and 17. This probe point locates on the
cross-section shown in Figure 10 and Figure 14, so that the velocity signals
can be interpreted in accordance with the two-dimensional vortex shedding
pictures. The signals of the three components of velocity are all periodic
functions of time. The axial velocity u has two local maximums and two
local minimums within a period. There are only one local maximum and
one local minimum within a period for the signals of the spanwise velocity
v and the vertical velocity w. The phase difference between v and w is
approximately 7r/2, which can be interpreted as a result of the small-scale
vortical structure passing through the probe.

In order to compare the axial velocity signal with the vortex and shed-
ding pictures in Figure 14, a part of Figure 15 has been enlarged and
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(a) t = 55.54L/U_ (b) t = 55.68L/Uo (c) t 55.S1L/U- (d) t = 55.95L/Uo

(e) t = 56.09L/U- (f) t = 56.23L/Uo (g) t 56.37L/U11 (h) t = 56.51L/U-.

Figure 14. Projected streamline and contours of axial vorticity of different time on a
cross section at x - 0.88L. Angle of attack a = 12.5', Re = 1.96 x 105, Ma = 0.1

Figure 15. Instanta- Figure 16. Instan- Figure 17. Instanta-
neous axial velocity at a taneous spanwise veloc- neous vertical velocity at
location of x = 0.88L, ity at a location of a location of x = 0.88L,
y = 0.076L, z = 0.0094L x- 0.88L, y = 0.076L, y = 0.076L, z = 0.0094L

z 0.0094L

shown in Figure 18, where those points with the same time as the frames
of Figure 14 have been marked with the same letter through (a) to (g). In
Figure 18, one period starts at point (a) and ends at point (g). Compared
with Figure 14, it has been found that the local minimum at point (d)
with a smaller axial velocity value is corresponding to the B-family vortex.
As the B-family vortex moves through the probe point, as shown in Fig-
ure 14(c) and (d), the axial velocity u decreases from point (c) to point
(d) and reaches its local minimum in Figure 18. Then the axial velocity
recovers as the B-family vortex leaves the probe point. It is followed by the
shedding of an A-family vortex from the leading-edge. Before the central
part of the A-family vortex reaches the probe point, the axial velocity u
signals recorded by the probe increases from point (e) to (f) in Figure 18.
Then it decreases again from (f) to (g) as the core of the A-family vortex
moves through the probe. Therefore, the local minimum at point (g) is as-
sociated with the A-family vortex. The local minimum at point (g) has a
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relatively larger value of axial velocity compared with the local minimum
at point (d), which is related to the B-family vortex. The center of both
A- and B-family vortices is low-momentum region. Since the B-family vor-
tex originates from the shedding of the secondary vortex near the suction
surface of the delta wing, and it brings fluid with lower axial velocity, the
central part of the B-family vortex has a lower momentum. The A-family
vortex comes from the shedding of leading-edge K-H type vortex. It brings
fluid from the free shear layer, which has a relatively larger momentum. In
Figure 18, the local maximum at point (b) is corresponding to frame (b)
of Figure 14, where both the A- and B-family vortices have not separated
from the delta wing. The signals of the spanwise and the vertical velocity
can be interpreted in a similar way. In Figure 17, the local maximum is
corresponding to the passing of a B-family vortex, where the vertical ve-
locity is positive. The local minimum is corresponding to the passing of an
A-family vortex, where the vertical velocity is negative. Thus the period of
velocity signals reflects the elapsed time at which the A- and B-family vor-
tices are shedding from the delta wing. Thus the period of vortex-shedding
can be measured as the distance between the peaks of local maximums or
local minimums on the signals of three velocity components.

Figure 18. Instantaneous axial velocity at location x = 0.88L, y = 0.076L, z = 0.0094L

In order to estimate the vortex-shedding period more accurately, power
spectrums of velocity fluctuations are calculated based on the velocity
signals and shown in Figure 19, 20, and 21. The velocity fluctuation is
calculated as the difference between the instantaneous velocity and the
time-averaged mean velocity. There are two peaks in the spectrum of the
axial velocity fluctuation shown in Figure 19. The frequency of the first
peak is 1.086Uoo/L and 2.31U,/L for the second peak. There is only one
peak in the spectrum of the spanwise and vertical velocity fluctuation.
The peak frequency is 1.086U../L, which is the same as the first peak of
the u' spectrum in Figure 19. This peak frequency value f = 1.086U•/L
represents the frequency of vortex shedding, the corresponding period is
T = 0.9208L/U,. The higher frequency in Figure 19, corresponding to a
time period of T = 0.433L/Uc, reflects the elapsed time between the shed-
ding of a A-family vortex and a B-family vortex, which is approximately
half the period of the shedding of a single A- or B-family vortex.
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Figure 19. Power spec- Figure 20. Power spec- Figure 21. Power spec-
trum density of u' at trum density of v' at trum density of w' at
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4.3. TIME-AVERAGED RESULT

The time-averaged velocity profiles distributed on a spanwise line above
the suction surface of the delta wing on a cross section at x = 0.88L is
shown in Figure 22. The distance between the spanwise line and the wing
surface is denoted by the vertical coordinate z in Figure 22. These results
are in good agreement with the experiments carried out by Rieley & Low-
son (1998). As it was stated by Rieley & Lowson (1998), the axial velocity
profile indicates the windward boundary layer separation. The inflection
point on the axial velocity profile is similar to the Kelvin-Helmholtz insta-
bility in plane mixing layers. In Figure 22(b), the spanwise velocity profile
near the surface (z=0.0002L) changes sign near y = 0.0746L, which is
corresponding to the re-attachment point of the secondary vortex. The in-
flection points on profiles of the vertical velocity component in Figure 22(c)
are corresponding to the edge of the leading-edge shear layer. The inflec-
tion point moves outboard as the distance from the wing surface increases.
The negative part of the vertical velocity is corresponding to the secondary
vortex. The secondary vortex is still visible in the time-averaged results.
The evidence of vortex shedding has been removed by the temporal aver-
age procedure. The point of inflection on the velocity profile is associated
with inviscid instability. Rayleigh's inflection point theorem, studying the
instability of a two-dimensional velocity profile based on the linear nor-
mal mode approach, points out that disturbance can be amplified at the
point of inflection. The physical interpretation of the theorem was given by
Lin (1945). The restoring mechanism will force a fluid particle displaced
vertically in either direction to return to its starting position. But at the
point of inflection the restoring mechanism is not present and disturbance
can grow. In the flow around the slender delta wing, the situation is more
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complex. On the two-dimensional cross section plane, which is vertical to
the axial direction, a strong shear layer is observed near the leading-edge,
as shown in Figure 14(a). The existence of the secondary vortex increases
the strength of the shear layer and provides more chance for the generation
of the Kelvin-Helmholtz instability.

1- 7- 0

S..... : ..... ....... 0

(a) Axial velocity (b) Spanwise velocity (c) Vertical velocity

Figure 22. Variations in the three components of time-averaged velocity at the lead-
ing-edge with increasing distance from the wing surface within on a cross section at
x = 0.88L

In Figure 23 the contours of time-averaged pressure on cross sections
at x = 0.31L, 0.45L, 0.59L, 0.73L, 0.88L are displayed. the lowest pres-
sure appears at the center of the primary vortex. The small-scale vortical
structures are smeared out by the time-average process. The profiles of
time-averaged velocity and pressure along a vertical line passing through
the center of the primary vortices are displayed in Figure 24 and 25. The
fluid at the center of the primary vortex experiences a acceleration between
x = 0.31L and x = 0.73L. The pressure decrease along the axial direction
within the same region. The large axial velocity excess in the center of the
primary vortex is an important feature of the delta wing velocity field. In
the experiment, the axial velocity at the center of the primary vortex can
reach 1.3U,,, which is smaller than the value predicted by the computation.
The vertical position of the vortex center can be identified by the maximum
of the velocity profiles. As the size of the primary vortex grows along the
axial direction the distance between the vortex center and the wing surface
also increases. Near the wing surface, a large slope on the velocity profile
is observed at each cross section.

5. Conclusions

Numerical simulation has been carried out to simulate the flow separa-
tion around a slender flat-plate delta wing at 12.50 angle of attack. Two
Reynolds number have been selected. At a lower Reynolds number of 5 x 104 ,
the flow is stable and dominated by a pair of leading-edge primary vor-
tices. At a higher Reynolds number of 1.96 x 105 , the computational re-
sults indicate the unsteady instability. The small-scale vortical structures
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Figure 23. Contours of time-averaged pressure on selected cross sections.
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Figure 24. Profiles of time-averaged Figure 25. Profiles of time-averaged
axial velocity along a vertical line pass- pressure along a vertical line passing
ing through the center of the primary through the center of the primary vor-
vortex. tex.

are shedding from the leading-edge. It has been found that the shedding
of the small-scale vortical structures originates not only from the Kelvin-
Helmholtz type instability of the leading-edge shear layer, but also from
the separation of the secondary vortex form the wing surface, as a result
of the interaction between the secondary shear layer and the leading-edge
shear layer. The vortex pairing of the small-scale structures are observed.
The periods of vortex shedding are obtained from the time series of veloc-
ity components. The distributions of the time-averaged velocity near the
suction surface of the delta wing obtained from the computational results
agree well with those from the experiment of Rieley & Lowson (1998).
But the steady small-scale vortical structures which indicate the steady
instability observed in the experiment have not been found in the current
computational results.
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