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This paper provides references for the Navy's existing databases. Various compilations of existing models are
models forshallow-water propagation. Theshallow-water acoustic found in Refs. 1, 4, and 5. The general subject of ocean
environment is then briefly described, followed by a description acoustic modeling and numerical methods is covered in Ref.
of sound propagation. Four basic models of sound propagation in 3. The purpose of this article is to briefly review the
the ocean most relevant to shallow-water propagation are derived
from their common wave equation origin: ray theory, spectral existing shallow-water computer models from the point of
theory, normal mode theory, and the parabolic equation method. view of their physics and their relationship to each other.
Some results from these models are discussed. The frequency regime covered here is up to a few kilohertz.

High frequencies do not propagate very long distances, and
INTRODUCTION hence are not dependent on gross shallow-water geophysical

properties that comprise the acoustic waveguide. Reference
The Oceanographic and Atmospheric Master Library' 6 is a compilation of many aspects of high-frequency

(OAML) contains a description of Navy models and acoustics.
databases. The Navy's use of shallow-water models can be
summarized as follows: Presently, the Navy's standard Although shallow-water acoustics has received great
shallow-water, passive acoustic propagation model, Collosus attention recently, there already is a rich baseline knowledgeII, is an empirical fitt to observed data. It is used for areas of acoustic propagation. Great progress has been made inwhere no significant environmental data are available; understanding this subject since the Bradley-Urick7 compila-otherwe no significantenvironmee d aa ar e rg ille;n tion of transmission loss for various shallow-water scenariosenvironmentse.2 appeared. The plots in this latter reference showed a 40 dB

spread at 10 km and a 50 dB spread at 100 kIn. In this
For range-dependent environments, the parabolic paper, we review the progress in modeling sound propaga-For ang-depndet eviromens, he prablic tion in shallow water and the subsequent understanding that

equation (PE) models' are used, including the standard split-
step and the more recent finite-element (FEPE) model, modeling and data analysis has provided. The bottom line

ASTRAL' is used for higher frequencies, say above 250 is that the environmental inputs to acoustic models remainthe crucial factor for quantitatively predicting propagation
Hz. The biggest problem facing shallow-water propagation ciaions.
prediction is the adequacy/resolution of environmental conditions.

We start this paper with a qualitative description of
sound propagation in shallow water. Next we describe the
generic propagation models in enough detail to give the
reader a sense of both their common underlying physics and

Approved their different theoretical and algorithmic approaches. We
conclude the paper with illustrative results from the various
models.
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1056 WILLIAM A. KUPERMAN

DESCRIPTIVE SHALLOW-WATER ACOUSTICS 0

In this section we describe the basic features of 20 WINTER
shallow-water environments and how these features control
sound propagation.' 8'9 See the Appendix for discussion of
units. 40

I r SUMMERI-

Environment 6-m 60-
0

By shallow water, this author means continental shelf 80
and slope such that sound propagation is best described as
a waveguide phenomenon. The waveguide is defined by the
upper air-sea boundary and the ocean bottom interface, 100- I I

which in a more general sense may be a composite of 1480 1500 1520 1540

stratified and/or nonstratified layers. The latter is often SOUND SPEED (m/s)
called a range-dependent environment that also includes the Fig. 1 - Typical summer and winter sound speed profiles
case of the sound speed varying as a function of horizontal
position, not just depth. The acoustic modeling significance
of a range-dependent environment is that the wave equation
describing acoustic propagation is not a "separable" partial profiles produce rays that bend more toward the bottom
differential equation, and therefore usually requires more than winter profiles in which the rays tend to be straight.
computationally intensive methods than separable equations. This implies two effects with respect to the ocean bottom:

The two most common classes of sound speed profiles e for a given range, there are more bounces off the
in shallow water are schematically represented in Fig. 1. ocean bottom in summer than in the winter; and
Typically, much of what is classified as shallow water is not 0 the ray angles intercepting the bottom are steeper in
deep enough for the depth-pressure term in the temperature- the summer than in the winter.
salinity-pressure dependence of sound speed to be signifi-
cant. Thus the winter profile tends to isovelocity simply A qualitative understanding of the reflection properties of
because of mixing, whereas the summer profile has a higher the ocean bottom should therefore be very revealing of
sound speed near the surface due to heating. The sound sound propagation in summer vs winter. Basically, near-
speed profile may vary spatially and temporally. Often, the grazing incidence is much less lossy than larger, more
temporal variations are caused by internal wave fields that vertical angles of incidence. Because summer condition
tend to be more ordered in shallow water than in deep propagation paths have more bounces, each of which are at
water. Sometimes confined internal wave packets, referred steeper angles than winter paths, we can expect summer
to as solitons, produce localized, travelling ocean distur- shallow-water propagation to be much worse than in winter
bances. conditions, which indeed they are. This result is often

tempered by rough winter sea surface conditions that
The ocean bottom has a great impact on sound propa- generate large scattering losses at the higher frequencies.

gation due to its material properties. Table 1 summarizes
some of the acoustic properties of the ocean bottom.' The Bottom Loss
effects of these bottom properties are briefly described in
the next subsection. Modeling the shallow-water environment as a wave-

guide yields a qualitative description of sound propagation
Acoustics that is very helpful in understanding more sophisticated

model outputs. However, to understand the effects of the
Much of the qualitative behavior of sound in shallow ocean bottom, let us first review the reflection properties of

water can be described by a combination of a simple an interface separating two media.
application of Snell's law and some understanding of the
reflection properties of the ocean bottom. Basically, Snell's Ocean bottom sediments are often modeled as fluids
law states that sound bends toward regions of low sound since the rigidity (and hence the shear speed) of the sedi-
speed. Hence, as described above, summer sound speed ment is usually considerably less than that of a solid, such
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ACOUSTIC PROPAGATION MODEL - SHALLOW WATER 1057

Table 1 - Geoacoustic Properties of Shallow Water and Continental Slope Ocean Bottoms
(Oz is the depth below the water-bottom interface)

Bottom p pb/pw cp/c" cp c, a, a,
Type (%) (m/s) (m/s) (dB/iX) (dB/X,)

Clay 70 1.5 1.00 1500 < 100 0.2 1.0

Silt 55 1.7 1.05 1575 c5
0M 1.0 1.5

Sand 45 1.9 1.1 1650 C<(2) 0.8 2.5

Gravel 35 2.0 1.2 1800 C4(3) 0.6 1.5

Moraine 25 2.1 1.3 1950 600 0.4 1.0

Chalk - 2.2 1.6 2400 1000 0.2 0.5

Limestone - 2.4 2.0 3000 1500 0.1 0.2

Basalt - 2.7 3.5 5250 2500 0.1 0.2

c50) = 80 Zo.3 c(3) = 180 io.3

c(2) = 100 0.3 c,. = 1500 m/s, p, = 1000 kg/m3

as rock. In the latter case, which applies to the "ocean The incident and transmitted grazing angles are related by
basement" or the case where there is no sediment overlying Snell's law,
the basement, the medium must be modeled as an elastic
solid. This means that it supports both compressional and k = k cos 0 = k cos m2' (3)
shear waves. where the incident grazing angle 0, is also equal to the angle

of the reflected plane wave. R(O) is also referred to as the
Reflectivity, the amplitude ratio of reflected and Rayleigh reflection coefficient, and has unit magnitude (total

incident plane waves at an interface separating two media, internal reflection) when the numerator and denominator of
is an important measure of the effect of the bottom on Eq. (1) are complex conjugates. This occurs when k2, is
sound propagation. For an interface between two fluid semi- purely imaginary. Using Snell's law, Eq. (3), for determin-
infinite halfspaces with density p, and sound speed C1, i= ing 02 in terms of the incident grazing angle, we obtain the
1,2, and a unit amplitude incident wave of the form exp critical grazing angle below which there is perfect
[i(k. r + k1, z) - iwt] [Fig. 2(a)], the reflectivity is given reflection,
by

cos 0, = c11c2, (4)

R(O) = p2klZ - Plk2z, (1) so that a critical angle can exist only when the speed in the
p2k1z + plk2z second medium is higher than that of the first. Below the

critical angle, the reflected wave undergoes a change of
with phase e, given by the argument of the complex reflection

coefficient; in this region [and using Eq. (2)], the reflection
coefficient can be written as a complex number with unit

k = (/c,) sin 0- k, sin Oi; i = 1,2. (2) magnitude
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1058 WILLIAM A. KUPERMAN

Sa)
P2 s2O 1 - (CIc2 exp [i (k. .+ k11z)] -exp [i (k .7+ k11 z)]

R(O) =- 01 - e", (5) L r eS

P2 P2 C2  01P2  i cOs 2  0, - (c2/c ,2) 01c

o, •/1 - cos2 01
F, O'T exp [i (kr .r+ klzz)]

where b)

R_ 1 - NON-LOSSY BOTTOM

2 LOSSY BOTTOMC/os' I--- PHASE

- 2 tan-' p1 os - (c2/c) (6) U _ PHASE

P2  1 -cosTO,

Note that P2 = 0 is the pressure release case, which is a cc
good approximation to that water/air interface; for this case 0 0
there is a 180-deg phase change. For the two-fluid interface 0 GRAZiNG ANGLE (deg) 90

under consideration, the phase change goes from 180 deg at
horizontal grazing incidence to no phase change at the Fig. 2 - The reflection and transmission process
critical angle. On the other hand, when the density and
speed of the second medium is very large, corresponding to
the rigid interface condition, there is no phase change. Since with the total impedance of the second medium being
it turns out that most shallow-water propagation corresponds
to paths with very low grazing angles, the pressure release
condition is actually a better approximation of a two-fluid Zz sin2 202 + Z~, cos 2 20,. (9)
interface than the rigid boundary condition.

Using Eq. (2), Eq. (1) can also be rewritten as Snell's law for this case is

R(O) = P, c2/sin 02 -- Pcl,/sin 01 = - 4 - Z, (7) ki cos 0, = k2, cos 02, = k2 cos 062. (10)

P2 c2/sin 02 + p1 c,/sin 01 42 + Z,
Shear speeds of less than a few hundred m/s have very

little effect on sound propagation. However, sediments with
where the right-hand side is in the form of impedances Z shear speeds greater than a few hundred m/s but still much
(0j) = pic/sin 01, which are the ratios of the pressure to the lower than the speed of sound in water (say, up to 1000
vertical particle velocity at the interface in the ith medium. m/s) appear to be highly absorbing because the propagation
Written in this form, more complicated reflection coeffi- of shear waves is another degree of freedom for sound to be
cients become intuitively plausible. Consider the case in transmitted away from the water column. For even greater
Fig. 2(a) in which the second medium is elastic and thus shear speeds but still less than the speed of sound in water,
supports shear as well as compressional waves with sounds the bottom appears almost transparent and waveguide
speeds c,, and c2P, respectively. The Rayleigh reflection propagation is severely attenuated. For the case of the shear
coefficient is then given by speed exceeding the sound speed in water, the shear speed

is the dominant bottom sound speed parameter because its
.- (8) value is closest to the water sound speed (the bottom

R(O) =(8) compressional speed must be larger than the shear speed).
Z21o + ZI For this case, a reasonable approximation (which also
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ACOUSTIC PROPAGATION MODEL - SHALLOW WATER 1059

neglects the existence of interface waves) to the magnitude
of the bottom reflectivity is to treat the ocean bottom as an SOUND

SPEEDeffective fluid whose compressional speed is the shear speed PROFILE RANGE

of the elastic bottom. Thus, the ratio of the shear speed to a) T •l/\4- e)V':-•_120c
the water sound speed will determine the critical angle. . OCEAN BOTTOM

In lossy media, attenuation can be included in the
reflectivity formula by taking the sound speed as complex (a) Long-distance propagation occurs within a cone of 20,
so that the wavenumbers are subsequently also complex, k,

k, + aj. Figure 2(b) depicts a simple bottom loss curve b) RAY-MODE ANALOGY D
derived from the Rayleigh reflection coefficient formula.
Both the densities and sound speed of the second medium
are larger than those in the first medium, with unit -
reflectivity indicating perfect reflection. The phase change
upon reflection is also shown. For loss in dB, 0 dB is A,/ -

perfect reflecting, 6 dB loss is an amplitude factor of one- d

half, 12 dB loss is one-fourth, etc. For a lossless bottom, - wavefront

severe loss occurs above the critical angle in the water -B
column due to transmission into the bottom. For the lossy B- - F

(more realistic) bottoms, only partial reflection occurs at all ray
angles. With paths involving many bottom bounces P0 c8
(shallow-water propagation), bottom losses as small as a P12 c2

few-tenths of a dB per bounce accumulate and become

significant because the propagation path may involve many
tens of bounces. A description of a reflectivity database is (b) Geometry for the constructive interference of wavefronts

given in Section 2.2.8 of Ref. 1. to form a mode
Fig. 3 - Ocean waveguide propagation

Qualitative Description of Waveguide Propagation

For simplicity, we consider an isovelocity waveguide
bounded above by the air/water interface and below by a environment with constant sound speeds and densities in the
two-fluid interface. Hence, we will have perfect reflection, water column and fluid bottom, respectively). Consider a
with a 180-deg phase change at the surface. For paths more ray along the path ACDF and its wavefront, which is
horizontal than the bottom critical angle, there will also be perpendicular to the ray. The two down-going rays, AC and
perfect reflection with an angle-dependent phase change DF, which are of the form
given by Eq. (6). Therefore, as schematically indicated in
Fig. 3(a), ray paths within a cone of 2 0, will propagated
unattenuated down the waveguide. Because the up and down 0&w,, exp [i(k± k1zz)-iwt] (11)
going rays have equal amplitudes, preferred angles will
exist such that perfect constructive interference can occur. will constructively interfere if points B and E have a phase
These particular angles can be associated with the normal difference of an integral number of 360 deg (and similarly
modes of the waveguide as formally derived from the wave for up-going rays). The acoustic phase change along BCDE
equation in the next section. However, it is instructive to is gin by T he acoust phase ange ance

understand the geometric origin of the waveguide modal is given by the product of the wavenunber and the distance
along the ray plus the change of phase at C and a 180-deg

structure. phase change at D, the pressure release surface.

Figure 3(b) is a schematic of a ray reflected from the Noting that A-B = DE, the condition for constructive
bottom and then the surface of a "Pekeris" waveguide (an interference is
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1060 WILLIAM A. KUPERMAN

The un's are called the normal modes of the waveguide,

k[ d d 1and they each propagate with phase velocity c,. The total
k . sin 0, cos(ir - 20,,) (12) field in the waveguide is the sum of all the normal mode

terms in Eq. (15). The vertical distribution can be thought
+ c + 7r = 2(n - 1) 7r; n = 1,2..., of as a superposition of up and downgoing plane waves at

discrete propagation angles within the cone ±O,. This
which, after using Eq. (6), reduces to discussion is qualitatively correct in general, but is

quantitatively limited to an isovelocity water column
Pdkn - overlying a fluid bottom with a constant soundspeed, i.e.,

tan\d kj - 1 ) = _ F, 2 (13) a Pekeris waveguide. In the next section we show that Eq.
| 1/k2 - k, (13) is the eigenvalue equation that comes from normal

where k,, is the horizontal wavenumber, k, corresponding mode theory. If the bottom medium is attenuating, then the

to the discrete angle 0,, and we have converted from angles wavenumber in the bottom will be complex. In this case,

to wavenumbers by using the relations c1/c2 = k2/k, and the individual eigenvalues k, become complex, and there is
an additional factor of exp(-a,,r) multiplying Eq. (15).

kj, = sin 0, = jk2 -k. k Physically, the normal mode attenuation coefficients a,,
increase with n since the higher order modes are more

Equation (13) is a transcendental equation in k, with vertical and therefore correspond to rays that have greater

real roots in the range loss per bounce and more bounces per distance down the
waveguide.

k2 < k < k1 ; (14)

A simple limiting case is when we approximate the
kt can be thought of as a wavenumber of a horizontal wave bottom as pressure release. The density of the second
traveling down the waveguide with a phase velocity of Cch , medium vanishes so that the right-hand side of Eq. (13) is
wik,2. Figure 3(b) shows that the more vertical the ray, the
more horizontal the wavefront. Hence, a vertical ray zero. This reduces to d k14 - k1 = nr so that the normal
corresponds to a horizontal wavefront, and the horizontal mode functions of this waveguide, the 7r phase-shifted sum
phase velocity along such a wavefront must be infinite since of the up and down going waves of Eq. (11), is of the form
the wavefront has constant phase. However, Ineq. (14) sin(nirzfd), which are a set of orthogonal functions that
limits the phase velocity to a maximum of c2, that is, rays vanish at both surfaces.
more vertical than the critical angle do not propagate (more
than a few bounces) down the waveguide. (For the simple SOUND PROPAGATION MODELS
limiting case of a waveguide bounded above and below by
pressure release surfaces, the rays do approach the vertical Sound propagation in the ocean is mathematically
so that the horizontal phase velocity c,, goes to infinity with described by the wave equation, whose parameters and
increasing mode number n.) On the other hand, a horizontal boundary conditions are descriptive of the ocean
ray has a vertical wavefront, and so the phase is constant in environment.' There are essentially four types of models
the vertical. In this case, the horizontal phase velocity is (computer solutions to the wave equation) to describe sound
limited to the medium speed. The vertical amplitude of the propagation in the sea: ray theory, the spectral or fast field
wave can be obtained by looking at the z part of the fields program (FFP), normal mode (NM), and parabolic equation
described by Eq. (11). The field for a particular n will be (PE). All of these models allow for the fact that the ocean
a superposition of the up and downgoing fields of Eq. (11). environment varies with depth. A model that also takes into
However, we need a negative sign between the two account horizontal variations in the environment (i.e.,
amplitudes so that the field vanishes at the surface. The sloping bottom or spatially variable oceanography) is termed
result is that the superposition of discrete up and downgoing range-dependent. For high frequencies (a few kilohertz or
waves results in a vertical amplitude distribution in the above), ray theory is the most practical. The other three
waveguide of the form, model types are more applicable and usable at lower

frequencies (below a kilohertz). The hierarchy of

z (15) underwater acoustics models is shown in schematic form ine ujz-•); ut =sin (•/k2- k,, 7) •Fig. 4.
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nonlinear . linear * freq, domain the limiting case of a fluid medium, where shear waves do
wave eq. wave eq. wave eq. not exist, 1,(r, z) represents the compressional potential 0(r,

z). Most underwater acoustic applications involve only
normal WKBa range compressional sources, which only excite the P and SV~TUFFP F~Pmodes approx. independent poetaselmnigwhcolyxiep potentials, eliminating the SH potential A(r, z). The

displacement potentials satisfy the Helmholtz equation with
NPE TmPE coupled adiabatic ray PE rdeaeent the appropriate compressional or shear sound speeds cp or
asymptotic asyptotic c,, respectively,

spectral ,x j [V] 1/2(

Fig. 4 - Hierarchy of underwater acoustics models P = , c5 = , (19)
(note: "TD" refers to time domain)

where X and IL are the Lame constants.

The Wave Equation and Boundary Conditions The most common plane interface boundary conditions

encountered in underwater acoustics are described below:

The wave equation is typically written and solved in For the ocean surface, there is the pressure release
terms of pressure, displacement, or velocity potentials. For condition where the pressure (normal stress) vanishes; for
a velocity potential p, the wave equation in cylindrical the appropriate solution of the Helmholtz equation, this
coordinates with the range coordinates, denoted by r = conditions is
(x,y), and the depth coordinate denoted by z (taken positive
downward) for a source free region is p=0, o=0ork=0. (20)

V2or9~ I a2o(r,z,t) 0, (16) The interface between the water column (layer 1) and an
C2  0t 2  ocean bottom sediment (layer 2) is often characterized as a

fluid-fluid interface. The continuity of pressure and vertical

where c is the sound speed in the wave propagating particle velocity at the interface yields the following

medium. With respect to the velocity potential, the velocity boundary conditions in terms of pressure:

v and pressure p are given by
I1OPI I OP2 (1

Pt =P2' (21)
V'P P (17) P•0Z ,2 Z

or velocity potential:
where p is the density of the medium. The wave equation
is most often solved in the frequency domain, that is, a
frequency dependence of exp(-iwt) is assumed to obtain the (P 2 2 = (22)
Helmholtz equation (Kw c)az a

V2(r,z) +K2,p(r,z) = 0. (18) These boundary conditions applied to the plane wave fields
in Fig. 2(a) yield the Rayleigh reflection coefficient given
by Eq. (1).

In underwater acoustics, both fluid and elastic (shear
supporting) media are of interest. In elastic media, the field For an interface separating two solid layers, the
can be expressed in terms of three scalar displacement boundary conditions are continuity of vertical displacement
potentials, 0(r, z), 0' (r, z), and A (r, z), corresponding to w(r, zi), tangential displacements u(r, zi) = (us, uy), normal
compressional (P), vertically polarized (SV), and stress n = a,, and tangential stresses t = (a,,, ay). In
horizontally polarized shear waves (SH), respectively. In cylindrical coordinates with azimuthal symmetry, the radial
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1062 WILLIAM A. KUPERMAN

and vertical components of displacements (in homogeneous Ray Theory
media) u and w, respectively, are

Ray theory10 is a geometrical, high-frequency approx-
imate solution to Eq. (27) of the form

u(r,z) = 0@+ 02(23)

G(R) = A(R) exp[iS(R)], (28)

w(r,z) = ato1 _ 1 a r aO, (24) where the exponential term allows for rapid variations as a
Oz r ar Tr function of range, and A(R) is a more slowly varying

"envelope" that incorporates both geometrical spreading and

and the normal and tangential stresses are loss mechanisms.The geometrical approximation is that the
amplitude varies slowly with range (i.e., (1/A)V 2 A < <
K2), so that Eq. (27) yields the eikonal equation

aw auu,,(r,z) = (X + 2 t) _5w _ + X T, (25)
(VS) 2 = K2. (29)

aOu awl (26) The ray trajectories are perpendicular to surfaces of constant
Iz " + W-1 " phase (wavefronts) S, and may be expressed mathematically

as

Continuity of these quantities at the interface between two
solids are the boundary conditions. For a fluid-solid d [K dR] = VK, (30)
interface, the rigidity 1 vanishes in the fluid layer, and the d
tangential stress in the solid layer vanishes at the boundary. L J
If at least one of the media is elastic, these boundary
conditions permit the existence of interface or surface where I is the arc length along the direction of the ray and
waves, such as Rayleigh waves, at the interface between a R is the displacement vector. The direction of average flux
solid and vacuum, Scholte waves at a fluid-solid interface, (energy) follows that of the trajectories, and the amplitude
and Stoneley waves at a solid-solid interface. These waves of the field at any point can be obtained from the density of
are excited when the source is acoustically close, in terms rays. See chapter 3 of Ref. 3 for more details.
of wavelengths, to the interface.

The ray theory method is computationally rapid and
The Helmholtz equation for an acoustic field from a extends to range-dependent problems. Furthermore, the rays

point source with angular frequency w is give a physical picture of the acoustic paths. It is helpful in
describing how noise redistributes itself when propagating
long distances over paths that include shallow and deep

V2G(r,z) + K2(r,z) = - 62(r - r) 6(z - z,); environments and/or mid-latitude to polar regions. The

K(z)_ ) (27) disadvantage of conventional ray theory is that it does not

include diffraction and such effects that describe the low-
c2(r z) frequency dependence ("degree of trapping") of ducted

propagation. In shallow water, many rays with many bottom
bounces are required. Hence, small errors from the high-

where the subscript "s" denotes the source coordinates. The

range-dependent environment manifests itself as the frequency approximation will accumulate rapidly with

coefficient K' (r,z) of the partial differential equation for the range.

appropriate sound speed profile. The range-dependent Full Field Solution or "Fast Field Program (FFP)"
bottom type and topography appear as boundary conditions
on scalars and tangential and normal quantities, as discussed The wave equation can be solved efficiently with
above. spectral methods3 when the ocean environment does not
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vary with range. The term "Fast Field Program" is used structure of g(k,z,z,) and the normal modes of the
because the spectral methods became practical with the waveguide. This spectral solution technique has recently
advent of the fast Fourier transform (FFT). Assuming a been extended to include range-dependent environments.' 3

solution of Eq. (27) of the form
For completeness, we mention an alternative method 4"-"

to evaluate Eq. (31) using a raylike representation solution
G(rz) I d2kg(kzz,) [Eq. (32)]. Up and downgoing solutions that satisfy the

27r = - (31) upper and lower boundary conditions are constructed by
using the appropriate boundary reflection coefficients. The

exp[k•k(r - r)] result is an infinite sum of multiple bouncing rays. Although

often such solutions are awkward for shallow-water
leads to an equation for the depth-dependent Green's problems (too many bounces combined with approximation
function g(k, z, z,), errors), circumstances that involve reverberation formulated

in terms of scattering at specific bounce locations can be
handled with such a technique.

+ (K2(z) - k 2) g =(z - z). (32)
dz2 21r Normal Mode Model (NM)

Furthermore, we assume azimuthal symmetry kr > 27r and Rather than evaluate Eq. (32) for each g for the
0 so that Eq. (31) reduces to (after integrating over the complete set of ks [typically solving Eq. (32) 1024 to 8196

azimuthal angle and converting the Bessel function to times], one can utilize a normal mode expansion of the form

Hankel functions and using the asymptotic form of the g(k,z) = • a, (k)u. (z), (35)

Hankel function (H0' (kr) - V/(2/rkr) exp[ikr - ir/4)])

where the quantities u, are eigenfucntions of the following

G(r,z) = exp(-iw'/4) [ t&(k)12g(k,z,z)exp(ikr). (33) eigenvalue problem:

(2wr)'n Jo d 2u. + [K2(z) - 2u(z) = 0;

We now convert the above integral to an FFT form by ' + k,] (36)
setting km = ko + mAk; r, = r. nAr where n, m = 0, r Um(Z)Un(Z)
1,...N-1 with the additional condition ArAk = 2 wINwhere P(Z)
N is an integral power of two:

where 6, = 1 for n = m and is zero for n # m. The
Akexp[i(korn - 7r/4) eigenfunctions u, are zero at z = 0, satisfy the local

G(rn,z) = (2rr)/2 boundary conditions descriptive of the ocean bottom
(34) properties, and satisfy a radiation condition for z -- oo.

N-1 They form an orthonormal set in a Hilbert space with
xE Xmexp(2rimn/N) weighting function p(z), the local density. Thus, for

,,-0 example, in a Pekeris waveguide, K is wlc 12, where ct,2 is
the speed of sound in the water and bottom, respectively,
and Eq. (36) is solved with the boundary conditions given

X = (k,)l2g(k,,z,z) exp (imroAk). by Eqs. (20) and (21). For the eigenvalues and
eigenfunction, the solution is Eqs. (13) and (15) [with an

Although the method is labeled "fast field," it is fairly slow additional normalization factor for Eq. (15) resulting from
because of the time required to calculate the Green's the orthonormality condition of Eq. (36)].
functions [solve Eq. (32)] many times. However, it has
advantages when one wishes to calculate the "near field" The range of discrete eigenvalues is given by the
region or to include shear wave effects in elastic media.", 12  condition
It is also often used as a benchmark for other less exact
techniques. We show below the relationship between the min[K(z)] < k, < max[K(z)]. (37)
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This is the nonisovelocity generalization of Ineq. (14). Hence, we note that the continuous spectrum is the near
These discrete eigenvalues correspond to discrete angles (vertical) field and the discrete spectrum is the [more
within the critical angle cone in Fig. 3(a) such that specific horizontal, profile-dependent) far field [falling within the
waves constructively interfere. The eigenvalues k. typically cone in Fig. 3(a)].
have a small imaginary part a,, which serves as a modal
attenuation coefficient representative of all the losses in the The advantages of the NM procedure are that:
ocean environment (see Ref. 3 for the formulation of
normal mode attenuation coefficients, and other refer- 0 the solution is available for all source and receiver
ences). Solving Eq. (32) by using the normal mode configurations once the eigenvalue problem is
expansion given by Eqs. (35) and (36) permits an analytic solved;
integration of Eq. (31) yielding (for the source at the origin) * it is easily extended to moderately range-dependent

conditions by using the adiabatic approximation; and
G(r,z) = -p(z) u,(z)uj(z)Hn(k,,r). (38)

S• it can be applied (with more effort) to extremely
The asymptotic form of the Hankel function [given above range-dependent environments using coupled mode
Eq. (33)] can be used in the above equation to obtain the theory.
well-known normal mode representation of a cylindrical
(axis is depth) waveguide: However, it does not include a full representation of the

near field.

G(r,z) - ip(z8) exp(-ixr/4) Adiabatic and Coupled Mode Theory
(87rr) 1r2(39) All of the range-independent normal mode "machinery"

u.(z )u,(z) exp(ikr - c,), developed for environmental ocean acoustic modeling
ex•i,,/2 applications can be adapted to mildly range-dependent

"conditions by using adiabatic mode theory. The underlying

assumption is that individual propagating normal modes
with the modal attenuation coefficient given by adapt (but do not scatter or "couple" into each other) to the

local environment. The coefficients of the mode expansion,
a in Eq. (35), now become mild functions of range, i.e., a,,

, r K(z) I un(z)1 2 (40) (k) -- a, (k, r). This modifies Eq. (39) as follows:%= T.p(z)

G~~)=I z,) exp(-ilr/4)
Equation (39) is a far field solution of the wave equation G(r,z) - 1(8)e/2

and neglects the continuous spectrum (k,, < min[K(z)] of (41)
Ineq. (37)]. 

×E u,,(z,,(Z) exp(tir - 7r),
To illustrate the various portions of the acoustic field, n

we note that k. is a horizontal wave number so that a "ray
angle" associated with a mode with respect to the horizontal where the range-averaged eigenvalues and attenuation
can be taken to be 0 = cos" [kIK(z)]. For a simple coefficients are
isovelocity waveguide, the maximum sound speed is the
bottom sound speed corresponding to min [K(z)]. At this I = 1 r" k,(r')dr'; Z" = I oij(r')dr', (42)
value of K(z), we have from Snell's law 0 = 0c, the bottom r 0 r o
critical angle. In effect, if we look at a ray picture of the
modes, the continuous portion of the mode spectrum and the k,,(r'), a,,(r') are obtained at each range segment
corresponds to rays with grazing angles greater than the from the eigenvalue problem [Eq. (36)] evaluated at the
bottom critical angle of Fig. 2(b) and therefore outside the environment at that particular range along the path. The
cone of Fig 3(a). This portion undergoes severe loss. quantities u,, and v, are the sets of modes at the source and

the field positions, respectively.
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Simply stated, the adiabatic mode theory leads to a d2J 1 dJ + Kl J = 0; (44)
description of sound propagation such that the acoustic field 'F' r dr-T
is a function of the modal structure at both the source and
the receiver and some average propagation between the two. 91+2rJ]

Thus, for example, when sound emanates from a shallow + 2 + 1 2 -_
region where only two discrete modes exist and propagates ar"

2  aZ2  r J ar j (45)
into a deeper region with the same bottom (same critical a 2

angle), the two modes from the shallow region adapt to the + +K 02 V - K0p = 0.
form of the first two modes in the deep region. However, ar

the deep region can support many more modes. Intuitively,
we therefore expect that the resulting two modes in the deep Equation (44) is a Bessel equation, and we take the
region will take up a smaller more horizontal part of the outgoing solution, a Hankel function H0

1(K0r), in its
cone of Fig. 3(a) than they take up in the shallow region. asymptotic form [given above Eq. (33)] and substitute it
This means that sound rays going from shallow to deep tend into Eq. (45), together with the "paraxial" (narrow angle)
to become more horizontal, which is consistent with a ray approximation
picture of downslope propagation.

Finally, fully coupled mode theory16 for range- Or-2 - (46
dependent environments has been developed but requires to obtain the parabolic equation (in r),
additional intensive computation. The computational burden
originates from having to include coupling in the backward
as well as forward direction. Under certain conditions, O2 +
restricting the computation to forward coupling results in az2 i '0  +K0(n2-1)tP=0, (47)
a computationally tractable procedure. For example,
forward coupled-mode theory has been applied to model where we note that n is a function of range and depth.
pulse propagation for shallow-water tomography studies. 7  Here, we use the "split-step" marching solution"8 to solve

the parabolic equation. We take n to be a constant for each
PARABOLIC EQUATION MODEL (PE) range step; the error this introduces can be made arbitrarily

small by the appropriate numerical gridding. The Fourier
Standard PE-Split Step Algorithm transform of •' can then be written as

The PE method is a practical wave-theoretic range-
dependent propagation model. In its simplest form, it is a x(r,s) =(r,z) exp(-isz)dz (48)
farfield narrow-angle (- ± 15 deg with respect to the
horizontal-adequate for many underwater propagation
problems) approximation to the wave equation. Assuming which together with Eq. (47) gives
azimuthal symmetry about a source, we express the solution
of Eq. (27) in cylindrical coordinates in a source-free region
in the form _s~x + 2iKo.+ K(n2-1)X=0. (49)

G(rz) = i/2(rz) J(r), (43) The solution of Eq. (49) is simply

and we define K' (r,z) = Ko2n2, n therefore being an "index
of refraction" co/c, where c. is a reference sound speed. X(r,s) = X(ro,s)
Substituting Eq. (43) into Eq. (27) in a source-free region 5
and taking K01 as the separation constant, J and 0' satisfy the X Kk(n2 - 1) - 0)
following two equations: p 2iK0  (r -
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with specified initial condition at ro. The inverse transform where z, is the source depth. Another common method is to
gives the field as a function of depth, initialize the field with a normal mode representation. There

are also more accurate and elegant methods to initialize the
PE (refer to Chapter 6 of Ref. 3 for an assortment of

[ (n 1 methods).
j'(r,z) f . X(rj,) exp -(n 2 

- 1)ArL 2 (51) Generalized or Higher Order PE Methods

iAr 2
1  Methods of solving the parabolic equation, including

x exp - exp(isz)ds, extensions to higher angle propagation, 19-22 elastic media,23

I and direct time-domain solutions with nonlinear effects24

have recently appeared.

where Ar = r - ro. Introducing the symbol Jr for the

Fourier transform operation from the z-domain [as Equation (47), with the second-order range derivative
performed in Eq. (48)] and Fr as the inverse transform, that was neglected because of Ineq. (46), can be written in
Eq. (51) can be summarized by the range-stepping operator notation as
algorithm,

1( rz ep i0( [p2 + 2iK0P + K02(Q2 -1)] 0 = 0, (55)
•/(r + Ar,z) = exp ( -1)Ar

(52)
where

x .j -1 exp (- 2-.I" [
I [ a. Q E n2 + 1a2 (56)

which is often referred to as the "split step" marching ar K02 aZ 2

solution to the PE. The Fourier transforms are performed
using FFTs. Equation (52) is the solution for n constant, but
the error introduced when n (profile or bathymetry) varies Factoring Eq. (55) assuming weak range-dependence and

with range and depth can be made arbitrarily small by retaining only the factor associated with outgoing prop-
increasing the transform size and decreasing the range-step agation yields a one-way equation
size.

P0p = iKo(Q - 1)0p, (57)

Finally, since the PE is an initial value problem, we which is a generalization of the parabolic equation beyond
must have a starting field. Typically we can approximate a the narrow angle approximation associated with Ineq. (46).
point source as a Gaussian shape since we are only
concerned with propagation angles confined to the narrow If we define Q = ri + q and expand Q in a Taylor series
cone discussed in this paper:3  as a function of q, the standard PE method is recovered

with Q = 1 + .5q. The wide-angle PE to arbitrary
accuracy in angle, phase, etc., can be obtained from a Pad6

(Z - (53) series representation of the Q operator,"900Z = K e"

Q =_ lf+"q l+E °J,- +0q m+, (58)

When the source is near the surface, it is helpful to use an j=1 I -+j Oq )
antisymmetric combination of the source and its image so
that the surface boundary condition is satisfied, where m is the number of terms in the Pad6 expansion and

gp(O,z) = •(O,z - z) - ,(O,z + z,), (54) a, ._ sin2 Jr 1 j, =cos2 [ Pr 1. (59)
012'-m-+1 2m+1 j m 2m+1J
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The solution of Eq. (57) using Eqs. (58)-(59) has been where p(r, r,) is the acoustic pressure at point r from a
implemented using finite-difference techniques for fluid and simple point source at point r1, and po(r0) is the pressure
elastic media.19.23 produced at a distance of 1 m from the same source in an

infinite homogeneous medium with density p(r5). Thus, we
A numerical method that allows one to solve the PE have that po(ro) = (4,rr)-1 exp(iKr) with r = 1. This formula

with large range steps (although the environmental range- is also referred to as the coherent TL when applying it to
dependence must still be adequately sampled) has been normal mode models in that TL contains the variations
recently developed and is referred to as the split-step resulting from interfering modes. The incoherent TL is
Pad6. 2°'01 In this technique, Eq. (57) is integrated obtained from a normal mode model by taking for the
analytically, numerator the square root of the sum of the magnitudes

P(r + Ar) = exp [iK(-I + V-1-)]p(r), (60) squared of the individual modal terms in Eqs. (39) or (41).

Propagation of Pulses

and the the Padd approximation is then applied, Presently, the most practical method to compute the

shape of a pulse as it propagates in shallow water is by
m Fourier synthesis. That is, a transmitted pulse with a source

exp[iK0(-1 + 11 + q )] = a (61) spectrum fio) will have a pulse shape at (r,z,t) given by,j 1 + bjq
P(r,z,t) = A fo)p(r,z;w•) e- " dwo, (64)

where the coefficients in the Padd series are discussed in
Ref. 21. The split-step Pad6 formula is obtained by where p(r,z;w) is the acoustic field that can be computed
substituting Eq. (61) into Eq. (60), from any of the wave models discussed in this section. In

particular, a normal mode over moderate bandwidths can be
used very efficiently by interpolating modal wavenumbers

P(r + Ar) = P(r) + (a.,)(1 + bj,.q)-1qP(r). (62) across frequency but assuming that the mode shapes do not
j-1r significantly change. This interpolation has even been

applied to coupled-mode computations."7 Time series can
also be generated efficiently using ray theoryYz

Range steps of more than an order of magnitude greater

than that used in the previous Pad6 implementation are now SOME RESULTS
permissible. Furthermore, the structure of the solution
permits the efficient use of parallel processors to speed up Range-Independent TL
execution of the algorithm. As far as the starting fields are
concerned, the same issues apply as discussed in the It is well established that all the models should be in
previous subsection. However, the "self-starter" algorithm2 agreement for range-independent environments. In over-
is particularly useful. lapping regions of validity (far field), normal mode and

spectral (FFP) solutions are identical. It is only more
Transmission Loss (TL) recently the PE results have converged to give the same

solution as a benchmark FFP solution. Figure 5 shows some
The models discussed in this section compute complex results' for a 100-m Pekeris waveguide with source and

quantities such as pressure. However, in underwater receiver at a depth of 99.5 m (for maximum interference
acoustics it is convenient to express the field in terms of structure). The water and bottom speeds are 1500 and 1590
transmission loss, which is defined as m/s, respectively; the density ratio between water and

bottom is 1.2; and the bottom attenuation is 0.5 dB/X. The

p(r r) frequency is 250 Hz. The standard PE without high angle
TL(r,rs) = -20 log10 I , , (63) accuracy fails to match the benchmark FFP results whereas

p0(r) the higher angle PE does.
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Fig. 5 - Comparison of transmission loss results for narrow 1400_ __ii
and wide-angle PEs with FFP reference solution 1400 7

FREQUENCY (Hz)

(a) Dispersion characteristics of the waveguide
Bottom Shear Wave Effects b) 1.o

For ocean bottoms with at least some rigidity, the F = 50 Hz
SD = 25 m

effect of the existence of shear provides the sound field with RD = 25 m

additional degrees of freedom to interact with the bottom. 0.5- R = 0km

The mechanism is coupling into shear waves and/or E-
interface waves (for a source acoustically close to the C o-
bottom interface). For bottoms with shear wave speeds less W

than the speed of sound in the water column, the shear c
waves carry energy away from the water column. The -0.5-

major effect is increased attenuation at low frequencies over
nonshear-supporting ocean bottoms. For the case when the -1.0 , ,
shear speed is higher than the water column sound speed, 0 0.2 0.4 0.6 0.8 1.0

the ratio of water column sound speed to shear speed TIME (s)
determines the critical angle. If a source is close (of the (b) Source pulse
order of a wavelength) to the bottom, it will couple into an
interface wave (Scholte wave at fluid-solid interface or C) 30

Stoneley wave and solid-solid interface). These wave can be F =50Hz

detected by hydrophones near or on the bottom or 20- SD=25m

seismometers on the bottom. All these effects are RD =e-dl~RD = 201T

computable using an FFP model. 12 10

Broadband Modeling
w1 -lo-

Because modes travel at different phase and group cc

speeds as a function of frequency, a pulse will disperse as -20-

it propagates. The phase speed is the horizontal propagation

speed (u, = /lk,,) of a wavefront [see, for example Fig. 0 0.2 0.4 0.6 0.8 1.0

3(b)] corresponding to a mode, whereas the group speed (v, REDUCED TIME t-r/1.500 (s)
= (dkJdw)`) of a mode represents the speed at which an (c) Received signal at a distance of 30 km from the source.
energy packet (which has a finite bandwidth) propagates
down the waveguide. Figure 6 shows plots of modal group Fig. 6 - 50 Hz bandwidth pulse propagation in a Pekeris wave-
speeds and a dispersing pulse in a Pekeris waveguide. 3 The guide. 3 The initial pulse length of 0.08 s becomes strongly dispersed,
sound speeds in the water column and bottom are 1500 and with a final length of around 0.7 s.
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1600 m/s, respectively. The density ratio is 1.5, and the approximation. There are essentially two methods to treat
bottom attenuation is 0.2 dB/X. Here, we see that the initial a three-dimensionally varying environment. The most
pulse disperses into two distinct pulses (mode 1 and 2) as a straightforward and still not very practical method is to
result of the different modal group speeds. At the trailing formally solve the 3D wave equation for a 3D environment.
tail is a weak third mode arrival. This has been done to some extent using ray methods29 but

is still rather numerically intractable in the wave theoretic
We also should note that, in general, a good regime. An approximation is to compute 2D TL along

approximation to modeling TL over some bandwidth, say, radials and outward from a source.30 Figure 8 shows an
a one-third octave band, is simply to compute the incoherent example of this for a bathymetrically variable shallow-water
normal mode transmission loss at the center frequency. region.31 TL loss computations along horizontal refracting

paths have also been made using a new model referred to as
Optimum Frequency the Adiabatic Mode PE.32 This latter reference includes

very-low-frequencydeep-water computations that essentially
The tradeoff between high-frequency attenuation and scale to approximately the shallow-water acoustic regime.

scattering and low-frequency bottom loss leads to an
optimum frequency of propagation in a waveguide. The SUMMARY
optimum frequency in a shallow-water environment depends
to a large extent on the width of the effective ducted An assortment of models have been developed to
propagation as well as the properties of the water column compute the acoustic field in shallow-water environments in
and bottom type. For a winter profile, the duct corresponds both the frequency and time domains. This paper has not
to the water depth. For a summer profile with source and considered fluctuations and other forms of statistical spatio-
receiver below the thermocline, the effective duct is the temporal variability of the environment/acoustics. The
water column below the thermocline. Figure 7 is the results relationship between these models is well understood, and
of an experimental and modeling study including a contour their accuracy as related to solving the wave equation is
of third-octave TL vs frequency and range.26 The optimum also understood. However, these models require
frequency is seen to be about in the region of 200-400 Hz environmental inputs-sound speeds and geophysical
from the contours. For example, at a range of about 60 kin, properties of the bottom as a function of position-which
the loss increases for frequencies above and below the turn out to be the limiting factor in how well they model
optimum frequency of propagation. Agreement between real-world scenarios.
experiment and theory was obtained by using the model/data
comparison to fine-tune the bottom parameters. Of course, REFERENCES
one set of bottom parameters must satisfy the data at all
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Appendix

UNITS

The decibel (dB) is the dominant unit in underwater
acoustics and denotes a ratio of intensities (not pressures) Wia•mrn A. Kuperman received B.S., M.S., and Ph.D.
expressed in terms of a logarithmic (base 10) scale. Two degrees in physics from the Polytechnic Institute of Brooklyn

intensities, I and 12, have a ratio, 11112, in decibels of 10 log .in 1965, the University of Chicago in 1966,. and the
11/12 dB. Absolute intensities can therefore be expressed by University of Maryland in 1972, respectively. He joined the

Aroustics Division of the Naval Research Laiboratory (NRL)
using a reference intensity. The presently accepted reference /in 1967. "n 1976 he went to the SA""ANT Undersea
intensity is a micropascal (JLPa): the intensity of a plane Iesearch Centre in" Spezia, Italy, for five years where hie
wave having an rms pressure equal to 10• dynes per square foiinded theEnvironmental Modeling Group, He returned to

centimeter. Therefore, taking 1 /tPa as 12, a sound wave head hi e Numerical Modeling Division at what is now the
having an intensity, of, say, one million times that of a NRL Detachment Stennis Space Center, MS. To 1985, he
plane wave of rms pressure I ArPa has a level of 10 log returned.to NRL in Washington, IC. Since 1993, lie las been

(106/1) m 60 dB re 1 Pa. Pressure (p) ratios are expressed a professor of oceanography and the director of the Marine

in dB re 1 MAPa by taking 20 log PllP2, where it is Physical Laboratory of the University of California, San
understood that the reference originates from the intensity t •Diego. He has done theoretical ani experimental ocean

undrstod hattherefrene oigiate frm te itenity ac oustic research on linear and nonlinear propagation,
of a plane wave of pressure equal to 1 APa. scattering, ambient noise, and signal processing.
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