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Molecularly Imprinted Polymers (MIPs) Against Uracils : Functional Monomer Design,
Monomer-Template Interactions In Solution And MIP Performance In Chromatography

Andrew J. Hall', Panagiotis Manesiotis, Jakob T. Mossing and B6rje Sellergren
Institut fiir Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitiit,
Duesbergweg 10-14, D-55099 Mainz, Germany.

ABSTRACT

The interaction of N -substituted uracils (cyclohexyl (1) and benzyl (2)) with three
polymerisable recognition elements, the novel monomers 9-(3/4-vinylbenzyl)adenine (3) and
2,6-diamino-9-(3/4-vinylbenzyl)purine (4) and the previously synthesised monomer 2,6-
bis(acrylamido)pyridine (5), has been studied via 'H NMR in deuterio-chloroform solution.
MIPs against (2) have been prepared using each of the monomers and tested in the
chromatographic mode. The effect of the number and type of hydrogen bonds formed between
the templates and the functional monomers is reflected in the values of the apparent association
constants obtained from the solution study and by the performance of the subsequently prepared
MIPs in the chromatographic mode.

INTRODUCTION

Interest in molecularly imprinted polymers (MIPs) has burgeoned in recent years [1].
The imprinting of nucleic acid bases and related compounds has attracted particular interest [2].
A survey of this literature shows that much MIP research has focused on the use of commercially
available functional monomers, e.g. methacrylic acid, to create the binding sites in such non-
covalent MIPs [3]. Among the exceptions is the use of 2,6-bis(acrylamido)pyridine (5) as a
functional monomer for the imprinting of alloxan, where the selectivity of the MIP over the non-
imprinted polymer (NIP) with respect to the recognition of thymine was also assessed [4]. Here,
the ability of the monomer to form multiple hydrogen-bond interactions with substrate molecules
was stressed. The same group has also recently reported the use of(5) as functional monomer in
the imprinting of 5-fluorouracil [5].

We now wish to report the preparation of the novel monomers 9-(3/4-vinylbenzyl)
adenine (3) and 2,6-diamino-9-(3/4-vinylbenzyl)purine (4) and their ability to form hydrogen-
bonded complexes with uracils. As a comparison, the previously reported functional monomer
(5) has also been studied. Adenine is, of course, the base-pair partner of thymine in nucleic acids
and so (3) could be expected to participate in hydrogen-bonding interactions with uracil
molecules. The additional amino- function in (4) should lead to stronger association with uracils
(1) and (2) by virtue of the potential extra hydrogen-bond interaction. The association of uracils
with (5) has been studied to explore the difference between the amido- and amino-
functionalities.
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(1) R = cyclohexyl (5)
(2) R = benzyl

(4) R' = NH2

EXPERIMENTAL

(1) was purchased from Sigma, while (2) and 1,3-(dibenzyl)uracil were prepared via a
published procedure [6]. Uracil and thymine were purchased from Acros, while AZT was
purchased from Sigma.

Novel monomer (3) was synthesised in 45% yield via the reaction of adenine and
vinylbenzyl chloride (mixture of reta- and para- isomers) in the presence of potassium
carbonate in dimethylformamide. Novel monomer (4) was obtained in 50% yield by
modification of a published procedure for the synthesis of 9-benzyl-2,4-diaminopurine [7]. (5)
was synthesised according to the method ofOikawa el al. [8].

H NMR titrations were performed by adding increasing amounts of monomer (0.5-
10rmM in CDCI3) to solutions of either (1) or (2) (1mM in CDCI 3) and the spectra were recorded
using a Bruker Advance DRX 400 spectrometer. The complex induced shift (CIS) of the imide
proton of(l) or (2) was followed. Apparent association constants were extracted from the raw
data by fitting to a 1:1 binding isotherm [9], using MicrocalTlM Origin.

Molecularly imprinted polymers (PNI(x)) were prepared by dissolving the template (2)
(0.05mmol), the functional monomer (x) (0. 1 mmol), ethyleneglycol dimethacrylate (20mmol)
and polymerisation initiator (ABDV) (l%w/w total monomer) in chloroform (5.6cm3) in glass
tubes, degassing the solutions with N2 for 10 minutes, sealing the tubes and polymerising
thermally at 40TC for 24 hours. The glass tubes were then broken and the polymers extracted
with chloroform in a Soxhlet apparatus for 24 hours. The polymers were then crushed and
sieved to obtain particles in the size range 25-50lim. After repeated sedimentation
(methanol/water : 80/20) to remove fine particles, the polymers were slurry- packed
(methanol/water: 80/20) into HPLC columns (125mm x 5mm, i.d.). Control, non-imprinted
polymers (PN(x)) were prepared in the same manner, but with the omission of (2).

HPLC analyses were performed using an HP1050 system equipped with a DAD-UV
detector. The mobile phase was acetonitrile (HPLC grade), the flow-rate 1 ml/min, analyte
injection volume was 201il and the analyte concentrations were 0.01-0.5mM. Analyte detection
was performed at 260nm. Analyte retentions are quoted as their capacity factors, k'= (t-to,)/to,
where t is the retention time for the analyte and t. is the retention time of the void volume marker
(acetone).
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Table 1. Apparent association constants (Kap) for the interaction of(1) and (2) with the
respective functional monomers.

Monomer Ka. (M-) with (1) Kap (M-) with (2)
(3) 63 ± 7 57 ± 8
(4) 282 ± 10 320 ± 16
(5) 567 + 28 757 ± 28

DISCUSSION

1H NMR Titrations

The extent of the association between the (1) and (2) and each of the functional
monomers was followed via NMR titration by examining the change in chemical shift of the
imide-proton of the respective uracil with varying concentrations of the respective functional
monomers. A large downfield shift was observed in all three cases. The maximum observed
A8 (ppm) with (1)/(2) as guest (at the concentrations detailed in the Experimental section) were,
for (3) = 2.23/2.24, for (4) = 3.95/4.33 and for (5) = 4.41/4.42. This is indicative of hydrogen-
bonding interactions between the uracils and the monomers. The apparent association constants
(Kmpp) extracted from the raw data, as described in the previous section, for the three monomers
with each uracil are shown in Table 1.

The results of these experiments demonstrate the effects of using monomers capable of
two-point and three-point binding, respectively. Gratifyingly, in keeping with our assumptions
in the design of the monomers, (4) exhibited a much higher association constant with (1) and (2)
than did (3), thus demonstrating the effect of the "extra" hydrogen-bonding interaction. While
there is also the possibility that (3) might self-associate, which would also reduce its
effectiveness in forming a complex with (1) or (2), previous studies have shown that in CDCI3
such self-association may be considered negligible [10]. The use of monomer (5) illustrates the
increase in association constant obtained when switching from amino- to amido- functionalities;
the association constants obtained here are also consistent with previous studies [11]. Thus, of
the three monomers studied, (5) exhibits the largest association constant with (1) and (2).

Polymer Preparation and Chromatographic Evaluation

To test whether the above observations would be translated into the subsequent polymers,
MIPs were prepared using each of the monomers using (2) as the template molecule (polymers
PM(3), PM(4) and PM(5), respectively). Control, non-imprinted polymers (NIPs) were prepared
in the same manner, but with the omission of the template molecule (polymers PN( 3), PN(4) and
PN( 5), respectively). In all cases, the crosslinking monomer was ethyleneglycol dimethacrylate
(EDMA) and the porogenic solvent was chloroform.

The recognition properties of the polymers were then evaluated in the chromatographic
mode. In Table 2 are shown the imprinting factors (IF = k'Mip/k'NrW) obtained for the different
MIP/NIP combinations when injecting the template (2). In general agreement with the
association constant data derived from the NMR titration experiments, it can be seen that PM(3)
and PN( 3) exhibit the same behaviour; (2) is equally weakly retained on both polymers and no
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Table 2. Imprinting factors (IF) for (2) for polymers prepared against (2)with the
respective functional monomers at various analyte loads.

Monomer used IF (0.01mM) IF (0.05mM) IF (0.1mM)
(3) 0.99 0.97 0.96
(4) 2.02 1.80 1.68
(5) 4.64 3.50 3.07

imprinting effect is observed. For Pm(4) and PN(4 ), we observe a difference in the retention
behaviour of(2) on the respective polymers and a mild imprinting effect is seen. Finally, for the
Pm(5) and PN(5) polymer pair, a much larger imprinting effect is obtained, as the MIP is seen to
recognise its template. We attribute this trend in the behaviour of the polymer pairs to the
strength of the template-monomer complex in the pre-polymerisation solution, i.e. the stronger
the association, the more complex is present and, subsequently, more and higher quality binding
sites are obtained.

In Table 3 are shown the capacity factors obtained at different template concentrations
and the capacity factors of molecules containing similar functionality to the template. Here we
see the effect of changing either the peripheral substitution or hydrogen-bonding capabilities of
the analyte.

For polymers prepared with (3) as the functional monomer, little or no change in the
retention behaviour of the analytes is observed (on either the MIP or the NIP); this is consistent
with the lack of imprinting effect observed for the template molecule (and the weak solution
association exhibited by this monomer).

For polymers prepared with (4) as the functional monomer, little shape selectivity is
observed for the template over different I-substituted uracils or for unsubtituted uracils.
However, the retention behaviour of 1,3-dibenzyl uracil, where a hydrogen-bonding site has been
removed (compared to (2)), is markedly different.

Finally, the retention behaviour of the different analytes on the polymers prepared from
(5) show the largest differences. Thus, we observe signs of shape selectivity on changing the

Table 3. Capacity factors (k') for different analytes on the respective imprinted and non-
imprinted polymers.

Analyte PNI(3 ) PN( 3 ) Phl( 4) PN(4) P-,(5) PN(5)
(concentration) k' k' k9 k9 k' k'

2 (0.01 mM) 0.49 0.50 1.06 0.53 3.32 0.72
2 (0.05mM) 0.48 0.49 0.95 0.53 2.42 0.69
2 (0. 1 mM) 0.47 0.49 0.90 0.54 2.07 0.67
2 (0.5mM) - - - - 1.16 0.46
1 (0.1mM) 0.48 0.50 0.97 0.61 1.43 0.67

1,3-dibenzyluracil 0.31 0.31 0.31 0.23 0.27 0.30
(O.mM)

Uracil (0.1mM) 0.38 0.67 0.77 0.49 0.97 0.82
Thymine (0.1mM) 0.41 0.56 0.88 0.56 1.16 0.96

AZT (0.5mM) 0.41 0.42 0.82 0.50 0.81 0.56
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substituent at the 1-position of uracil (k'M(2) versus k'M(1) and k'M(AZT))). We also observe that
removing or adding hydrogen-bonding sites to the analyte adversely affects the retention
behaviour (with 1,3-dibenzyl uracil being extremely weakly retained).

CONCLUSION

We have demonstrated that the strength of the interaction between the template and
functional monomer in a solution mimicking the pre-polymerisation solution is indeed translated
into the subsequently prepared MIPs. Novel monomers (3) and (4) are seen to perform less well
than the previously reported monomer (5) and we are currently pursuing the synthesis and
evaluation of improved functional monomers as part of a continuing programme of functional
monomer design for use in molecular imprinting.
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