
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP013592
TITLE: Simulations of Internal-Wave Breaking and Wave-Packet
Propagation in the Thermocline

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: From Stirring to Mixing in a Stratified Ocean. Proceedings
Hawaiian Winter Workshop [ 12th] Held in the University of Hawaii at
Manoa on January 16-19, 2001

To order the complete compilation report, use: ADA412459

The component part is provided here to allow users access to individually authored sections
)f proceedings, annals, symposia, etc. However, the component should be considered within
[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013572 thru ADP013596

UNCLASSIFIED



Simulations of internal-wave breaking and wave-packet
propagation in the thermocline

G.F. Carnevale
Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA

P. Orlandi
Dipartimento di Meccanica e Aeronautica, University of Rome, "La Sapienza," via Eudossiana
18, 00184 Roma, Italy

M. Briscolini
IBM Italia S.p.A., Via Shangai 53, 00144 Roma, Italy

R.C. Kloosterziel
School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, 1000 Pope
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Abstract. An investigation into density and velocity fluctuations in the
oceanic thermocline is presented. Two kinds of numerical simulation are
reported. In the first, an attempt is made to capture the transition from
breaking internal waves to the small-scale turbulence they generate. The
model used for this is based on a continual forcing of a large-scale standing
internal-wave. Evidence is presented for a transition in the energy spectra
from the anisotropic k- 3 buoyancy range to the small-scale k- 5 /1 isotropic
inertial range. Density structures that form during wave breaking are analyzed
and regions of mixing associated with the breaking events are visualized. In
the second kind of simulation, internal-wave packets are followed as they
propagate through the thermocline. It is found that the breaking of crests
within the packet can lead to overturning events on the scale observed in the
ocean, and the subsequent turbulence can form a continuous wake.

Introduction ford and Pinkel. Since the observations are essen-
tially one-dimensional in space, a direct numerical sire-

In recent observations of fluctuations in the oceanic ulation which could faithfully describe events in this
thermocline, Alford and Pinkel (1999, 2000) found many range would help toward understanding the full three-
overturns with vertical scale of about 2 m and these dimensional flow structures behind the observations.
were highly correlated with the presence of energetic The first part of our investigation will focus on the
waves with vertical wavelengths on the order of 10 m. production of overturns by an idealized internal wave
Large scale fluctuations, say 10 m and above in ver- forcing.
tical scale, can be described reasonably well as inter- The second part of our investigation concerns the
nal waves. For much smaller scales, say 1 m and be- propagation of internal-wave packets through the ther-
low, the flow is probably better described in terms of mocline. Alford and Pinkel (1999, 2000) observed co-
nearly isotropic turbulence. Intermediate between the herent regions of strong oscillatory vertical strain rate
large-scale wave dynamics and the small-scale turbu- that travel vertically through 100 m or more of the ther-
lence is a transition regime in which there is a com- mocline. These propagating structures had an internal
petition between waves and turbulence. It is this wave structure with vertical wavelength of about 10 m,
intermediate range, often called the buoyancy range, and the entire coherent region could be described by
that contains the overturning activity observed by Al-
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154 CARNEVALE ET AL.

an envelope of about 50 m in vertical extent. These tra. Constructing a theory of this transition is compli-
coherent structures were strongly correlated with 2 m cated because of the anisotropy of the buoyancy range.
overturns. Given the complicated nature of the flow, To make progress, some theoretical formulations have
with strong components of large-scale advection, it was represented the entire spectrum as depending only on
difficult to know precisely what kind of structures to wavenumber k. The model for the kinetic energy spec-
associate with these coherent localized oscillations. Al- trum in the buoyancy range is then
ford and Pinkel suggested that these were internal-wave
packets. Here we hope to validate that identification E(k) = aN 2 k 3  (1)
to a certain extent by showing how an idealized packed
would propagate through a simplified model of the ther- where a is an empirical constant and N is the Brunt-

mocline, and by showing that the observed overturn- VUisdhih frequency, which measures the strength of the

ing scales could be consistent with internal-wave packet stratification. The Brunt-Viisild frequency is defined

propagation. by

Given current computer resources, it would not be N2 
- - (2)

practical to simulate all of the scales that are relevant P0 (2
to the breaking of waves in the buoyancy range. The where g is the acceleration of gravity, P is the back-
forcing of the waves is thought to result from a com- ground density profile, assumed stable (i.e. Op/8z < 0),
plicated interaction of many internal waves with scales and P0 is the volume average of p. From the observed
ranging in the vertical from 10's of meters to hundreds spectra of vertical shear, the constant a is determined
of meters and more, and typical horizontal internal wave to be about 0.47, but it will be more convenient for us
scales can be even much greater than these. On the to consider the two components of the horizontal veloc-
small-scale end of the spectrum, the observed break- ity (u, v) separately, and, assuming horizontal isotropy
ing is occurring on vertical scales of the order of 1 m, in the observations, this would suggest a ; 0.2 for the
and these breaking events produce turbulence that ex- spectrum of either component (cf. Gibson 1986, Gargett
tends down to a viscous cutoff on the order of 1 cm. et al. 1981). The inertial range kinetic energy spectrum
Thus direct numerical simulation of the entire range of is given by
scales is still impractical. We will use a combination E(k) = Cg 2 3 k 5 /3  (3)
of LES modeling and an artificial model of the large where E is the turbulent dissipation rate of total kinetic
scale forcing in order to reduce the spectral range that energy and CK is the empirical Kolmogorov constant.
we will need to cover. To attack our first problem of A reasonable value to assume for CK is 1.5 (cf. Lesieur,
investigating how waves at the short-scale end of the 1997). For the energy of one component of the velocity
Garrett-Munk (1975) spectrum go unstable and break field, there would simply be a prefactor of 1/3 multi-
in the buoyancy range, we have used an artificial forcing plying this isotropic spectrum. The Ozmidov (or buoy-
with length-scales fixed at 20 m in the vertical and 20 ancy) wavenumber is then estimated by simply match-
m in the horizontal to represent the effect of all larger ing these two spectra at wavenumber kb. The result is,
scales. At the small-scale end of the simulation, we have i n sper atw venuthrui
introduced an eddy viscosity with a cutoff at the 16 cm u
level in both horizontal and vertical directions. Thus kb =- NV/-N- ,E (4)
our model does some violence to the true physics at
the large and small-scale ends of the simulated range. (cf. Holloway, 1981; Gibson 1986).
However, the hope is that it will do justice to the evo- The model for the potential energy spectrum in the
lution in the buoyancy range. This model does prove buoyancy range is similar to that for the kinetic en-
capable of capturing the transition from the buoyancy ergy spectrum. The empirical constant a for the tem-
to the inertial range. For the problem of wave-packet perature spectrum is found to have value of about 0.2
propagation, which is perhaps the source of the order (cf. Gibson 1986, Gregg 1977). The spectral model for
10 m scale variability most correlated with overturning, the inertial range of density fluctuations is the Corrsin-
we needed to expand our domain size in order to allow Obukhov spectrum, which involves the decay rate of
for the propagation and evolution of the packet. density fluctuations as well as e. For our purposes, we

prefer to write the spectrum directly in terms of the
Forced 20-meter wave turbulent decay rate of potential energy, which we shall

write as Epe. Then the Corrsin-Obukhov spectrum for
Our first goal is to determine to what extent our the potential energy takes the following form:

simulations can capture the transition from the buoy-
ancy range to the inertial range in the energy spec- PE(k) = Coepe -/ 3 k-s 3 , (5)
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where C0 is the Corrsin constant. the closure model for stratified turbulence. For simplic-

For all of the simulations presented here, we have ity, we have just taken the turbulent Prandtl number
used the Boussinesq approximation. The evolution Prt(k) to be a fixed constant independent of k in our

equations may be written as simulations. We determined this constant by examin-
ing the evolution of the potential energy spectrum for0u 1 p'

_T + u- Vu + -Vp' - -g = V(V 2 )V 2u, (6) decaying stratified turbulence that is initially highly ex-
P0 P0 cited at all scales. More specifically, we started with an

.(7) initial spectrum in which the GM spectrum was contin-
apt uued to scales below 10 m as in the decay simulations

p + + 2  of Siegel and Domaradzki (1994). With Prt = 0.55
at +- U - Vp' + Wz = •(V2)V p, (8) our simulations of decaying turbulence produced spec-

where v(-) and n(-) are considered functions of the tra with the high wavenumbers obeying the k- 5 / 3 law
Laplacian operator and are used to represent eddy pa- for both velocity and density fluctuations.
rameterizations in general (cf. Herring and Metais Next we turn to the question of the forcing. The
1992) and g = -gi. We have neglected the effect of ro- large-scale flows that actually drive the buoyancy range
tation, which should not play a major role at the small are predominantly the waves of the Garrett-Munk range.
scales with which we are concerned. The total density The full range where internal wave dynamics dominates
is given by includes scales of kilometers in the horizontal and hun-

p = A(z) + p'(x, y, z, t), (9) dreds of meters in the vertical. Because of lack of reso-

where p'(x, y, z, t) is the deviation from the horizona- lution, we cannot provide a full representation of the

tally averaged density p(z). Po is the average of p(z) effects of all large-scale internal wave forcing on the

over z. The pressure p' is the deviation from the back- buoyancy range. In our model, of necessity, we perform
ground mean pressure. p' can be determined in terms of a drastic reduction in modeling the forcing; we replace

u by taking the divergence of (6) under the assumption the driving of all of the GM waves by a linear stand-

that the velocity field is divergenceless. ing wave at one wavelength. Bouruet-Aubertot et al.

We simulate these dynamical equations with a spec- (1995, 1996), in two-dimensional simulations of a strat-

tral code with triply periodic boundary conditions. As a ified turbulence, excited a standing wave of the type

sub-grid scale parameterization, we have used the large- we use, but they allowed this wave to decay, whereas
ebgddy simulationmmoeelzafionwehandeRogallo (1989). we maintain its amplitude at the same level throughouteddy simulation model of Lesieur and Rglo199. the simulation.

This eddy viscosity vt(k) is approximately constant

throughout the buoyancy range and the large-scale end To give the form of the forcing used, let us first in-

of the inertial range, but increases rapidly with k in the troduce nondimensional units. We will take all lengths
vicinity of the spectral cutoff k.. Due to the spectral to be scaled by 2ir/L, where L is the length of one side

shape of the eddy viscosity, this model is sometimes of our computational domain. Time will be scaled by

called the cusp model. It seems reasonable in modeling 1/N. Then the frequency of linear internal waves is

the buoyancy range to use such a model since it does given by
not completely neglect the effects of unresolved eddies a - :11-
on the buoyancy range, but, at the same time, it puts
the strongest eddy viscosity in the inertial range near where kh = k/-• + k. is the horizontal wavenumber.
the cutoff. One particular linear standing wave is

We should emphasize the point that the size of the t
eddy viscosity depends on the amount of energy at the u = (u,v,w) = A-g(0 sinysinz, cosycosz) sin
cutoff scale. If the resolution of the simulation of a given s i ci 7,2
physical flow is increased, that is if k, is increased, then '! t (12)

the eddy viscosity will be correspondingly smaller. The _- = A cos y cos z Cos (,
total viscosity used in the simulations is the sum of P0 c o(

the eddy viscosity and the constant molecular viscosity where A is an arbitrary amplitude and g* is the nondi-

v, o1. Thus the V(V 2 ) in equation (6) in the spectral mensional gravity. Note that the dimensional period of

simulation is taken as the total viscosity: this wave, which is the forcing period, is given by

T 27r
v(k) = v/mozl + t(k) (10) TF -= v2 (14)

The choice of turbulent diffusion depends on the To give some idea of the structure of this standing
choice of values for various parameters that enter into wave, we show in Figure 1 a contour plot of the density
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r .. Pinkel's (2000) analysis. In particular, they noted that
there were regions of high shear where classical shear
instabilities often, but not always, resulted in overturn-
ing. Even more more interestingly, there were regions of

. high Ri in which overturns were also observed. In more
--- .than half of these cases Ri was even greater than 2 sug-

gesting that the typical shear instability (Ri < 1/4) is
"unlikely. Many of these overturns were in regions of high
vertical strain rate. With our standing wave forcing, the

Z regions of high shear and high strain rate are separate
and each occur in the same location during each forcing
oscillation. This helps simplify the analysis.

... In two-dimensional numerical studies of Bouruet-
.- Aubertot et al. (1996), the standing wave becomes un-

-. stable and generates turbulence. This would also hap-
. .-- pen in our three-dimensional simulation, but the tur-

bulence would be highly constrained since there is yet
-- no source of x-variation in our flow. To break the two-

-r -7 rdimensional symmetry of the flow, while maintaining
- the basic structure of the large scale, we add a weak

Figure 1. Contour plot of the density field in a vertical component of forcing with x-variation. We have tried

y-z cross section through the center of the domain. The this in various ways: adding a random initial pertur-

width and height of the cross section are each 20 mn, bation at all scales, randomly forcing the modes with

which corresponds to 27r in nondimensional units. The k = 1 at each time step, adding another large-scale

instant shown corresponds to maximum displacement standing wave, adding a propagating wave, and so on.

of the isopycnals for the forced standing wave. The results are similar to each other if the perturbations
are sufficiently weak. For the simulations discussed be-
low, we have added to the primary forcing wave only a

field in a vertical y - z cross section. Note that the den- small amplitude standing wave of the same spatial scale.
sity field in this standing wave has no variation along Specifically, we added the following perturbation:

the x direction. In this figure, we see an instantaneous A 9  + - cos(x t s
representation of the iso-density surfaces. When t/l /V is u= -A 2 (cos(x + z), 0, - + z)) sin z, (15)
an odd multiple of 7r/2, these isopycnals will all be flat.
The degree to which they deviate from that at other pI t
times depends on the value of A as well as t. The instant -P A'cos(x + z) cos 7. (16)
of time represented here is such that t/v/'2 is an integer P0
multiple of 7r and, hence, one of maximum distortion of Thus in the simulations discussed below the forcing oc-

the density contours. Note that the density field in (13) curs only at k = v/2. The coefficient A' was taken to

has two nodal planes, represented by two thick contour be A/20, and, hence, the energy in the perturbation is

lines in the figure, at z = ±7r/2 (nondimensional). Dur- only 1/400 that of the primary forcing wave.

ing the forcing cycle, these planes remain flat and fixed We performed a series of experiments in which the
in position. The fluid above and below these planes ver- size of the computational domain and the amplitude of
tically approaches and retreats from them depending on the forcing were varied. The initial studies were at res-
the phase in time and the y position considered. Thus olution 643 and showed that for sufficiently large am-
the points on the nodal planes at y = 0 and y = ±7r plitudes A for which the forcing wave itself was over-
are the centers of regions of oscillating high strain rate. turning, a k- 5 / 3 spectrum extending over most of the
On the other hand the points where the isopycnals are spectral range could be established. For weaker forc-
steepest, that is where y = -7r/2, ÷37r/2 and z = 0, ±7r ing, a steeper spectrum approximating k- 3 was found
the magnitude of the shear Ov/Oz is highest. Thus one (Carnevale and Briscolini, 1999). For intermediate am-
advantage of the standing wave forcing is that the points plitude forcings, we were able to observe, at least inter-
of highest shear and highest strain rate remain fixed in mittently, cases which do appear to exhibit the transi-
space making it easier to differentiate the kinds of over- tion from the buoyancy range to the smaller scale in-
turning events associated with these extremes. This will ertial range. Weak and strong forcings are measured
be convenient for making comparisons with Alford and relative to shear amplitudes typical in the thermocline.
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The best results were obtained with a forcing ampli- For L = 20 m, this Reynolds number would be ap-
tude that could actually be considered representative proximately 10'. By including the molecular viscosity,
of wave amplitudes in the thermocline. Specifically, the the simulation is an attempt to represent flow with this
forcing amplitude that we refer to as intermediate, is for Reynolds number. We will see that there is not much
a value of A in equations (12) and (13) such that the difference with results obtained by neglecting the molec-
maximum shear during a cycle of the forcing is equiva- ular components of viscosity and diffusivity. That is to
lent to the rms shear of the GM spectrum at the scale of say that over the range of scales simulated (20 m to 33
our computational domain. The rms shear is calculated cm) the difference between infinite Reynolds number
by integrating the shear of the GM spectrum from the flow and that for Re = 105 is small.
kilometer scale down to the scale of interest (cf., Gregg, We can think of our standing wave forcing as the
1989). Our best results tended to be for cases in which linear susperposition of a set of propogating internal
the vertical wavelength of the forcing was 20 m. For waves. To be precise, the combination of the two stand-
N = 3 cph, the net rms shear from the GM spectrum ing waves given in (12) and (15) consists of 12 propagat-
for this scale is SGM( 2 0 m); 3 x 10-3S-1 (Cf_, Gregg, ing plane waves. These wave interact nonlinearly pro-
1989). Taking this value to determine the amplitude ducins smaller-scales that eventually fill out the entire
of our forcing, we obtain a standing wave in which the spectrum. The early evolution is essentially just that of
largest deviation of the density isosurfaces are as illus- the nearly two-dimensional standing wave. During this
trated in Figure 1. Thus we have a standing wave that time there are only sinusoidal waves on the most dis-
does not itself overturn during the forcing cycle, and, turbed isosurface, but these waves then fold over form-
in addition, the Richardson number of the forcing wave, ing elongated overturns. These regions are convectively
defined by unstable and break. At this point the three dimension-

T- o ality of the flow becomes evident.
Ri P2 Oz(, (17) After about five cycles of the forcing, the large-scale

wave breaks repeatedly, however, not necessarily during
does not drop below 3.125. Therefore, the forcing wave each forcing period. The wave breaking on the most
itself is convectively stable and not subject to shear in- disturbed isopycnal occurs roughly symmetrically with
stability. This kind of forcing is consistent with the pic- large-scale overturning occurring nearly at the same val-
ture that the GM waves themselves are not convectively ues of y and z each time and along lines of constant x,
or shear unstable, but through wave-wave interactions respecting in the large scales the symmetry of the main
will produce smaller scale waves that are unstable by part of the forcing. However, no two breaking events
these criteria. Choosing a stronger forcing wave that with the subsequent evolution during the forcing cy-
is itself convectively or shear unstable would miss the cle are the same. In Figure 2, for one such cycle, we
important cascade process that produces the unstable show eight instantaneous images of this isosurface us-
waves of the buoyancy range, but would rather produce ing a perspective three-dimensional plot. The frames
turbulence directly resulting in an inertial range (cf. are ordered temporally from left to right and top to
Carnevale and Briscolini, 1999). bottom. The first frame in the upper left hand cor-

For all of the simulations discussed below, we used ner corresponds to t 11.39TF, and the interval be-
"a resolution 1283 and a computational cube of 20 m on tween frames is At = TF/7. Thus the first and last
"a side. Our isotropic spectral cutoff is at wavenumber frames correspond to the same phase of the forcing.
60, and the smallest resolved wavelength is about 33 The first frame captures the moment when breaking
cm (with grid spacing 20 m/128 g 16 cm). The forc- is just beginning. Let us say that the first four frames
ing amplitude was fixed so that the max shear in the represent the breaking event, and the last four the af-
forced wave is SGM(20 m), and the VffisSlM frequency termath. We see that during the breaking event, heavy
was taken to be 3 cycles per hour, which is a typical fluid spills over lighter fluid, crashing down with the cre-
oceanic value. ation of small-scale structures all along the lines of the

A long simulation was performed with realistic values two breaking regions. Similar behavior is in laboratory
for the molecular viscosity and diffusivity. The kine- experiments with standing-wave forcing (Taylor 1992,
matic viscosity was set to vmol = 0.01 cm 2 /s and the McEwan 1983a). Afterwards, the region of the small-
molecular Prandtl number at Prmol = 7 (cf. Gargett, scale turbulent structures spreads, eventually 'contam-
1985). We can calculate a Reynolds number for the inating' the entire isosurface. If we compare the final
oceanic flow for vertical motions on the 20 m scale by frame with the first frame, we see that the final surface
using the rms shear. Thus we can write is much rougher, filled with small-scale structures ev-

erywhere, and that there is no larger scale folding-over
Re = SGM(L)L 2 /Zm.. (18) of the surface as there was in the first frame. In the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. The evolution of the p po isopycnal during one cycle of the forcing. The frames are ordered by time
from left to right and top to bottom. The first corresponds to t = 11.39TF, and the interval between frames is
At = TF/7.
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later evolution, the wave will break again, but only af- curs only for periods during which there is active break-
ter a refractory period, in this case of about two forcing ing. Indeed, it appears that wave-wave interactions re-
cycles. peatedly build up energy in the buoyancy range until

Next we will consider the energy spectra for the flow a k- 3 spectrum is achieved. At that point significant
at the same times as those illustrated in Figure 2. Since breaking occurs and energy drains from the buoyancy

the energy is highly anisotropic at scales larger than range. Let us focus on the breaking event. In Fig-

those in the inertial range, plotting the total energy as ure 4a is the image of the p = po isosurface at the

a function of the isotropic wavenumber tends to obscure time identified as the best for illustrating the spectral

the transition between small and large scales. To most transition from the buoyancy to the inertial range. It

clearly display the transition, we have found it useful to shows the curling over and spilling down or plunging of

consider the spectrum E (k) of v, the y component of the heavier fluid over lighter, while Figure 4b suggests
velocity, which is the horizontal component that is di- mixing by the appearance of many small-scale struc-
rectly affected by the forcing. Along with the spectra, tures along the two parallel lines of the breaking wave.
we have also drawn lines corresponding to the inertial The corresponding spectra for all three components of
range spectrum (1/3)CKe2 / 3 k- 5 / 3 and buoyancy range kinetic and for the potential energy are shown in Fig-

spectrum U.2N2k- 3 . For each frame, E is taken as the ure 5. First we notice that although the spectra are
total kinetic energy dissipation rate at that time. We highly anisotropic from the forcing scale (20 m) down
have included a factor of (1/3) which is appropriate to about the 1 m scale, there is an approximate 're-
for a single component in the isotropic inertial range. turn' to isotropy for the smaller scales. This is particu-
For the Kolmogorov constant, a value of 1.5 was used larly evident in the kinetic energy spectra for t =11.82
in each case. We should emphasize that no attempt TF (panel c). In panels (a) and (c), we have made an

is made here to fit the data, but the coefficient is just attempt to draw the best fit inertial range spectra to
taken as this standard value a priori. For the buoyancy determine the appropriate Kolmogorov constants (CK)
range spectrum, we have used the coefficient a = 0.2 that fit these data. We did this for the E, (k) spectra,
in all cases. In each frame shown in Figure 3, we see a obtaining the best fit 'by eye' from enlarged portions
fairly good match at wavenumbers greater than about of the small scale spectra. The result that was used to
20 (that is for scales below about 1 m) to the Kol- draw the inertial range model spectra in panels (a) and
mogorov inertial range spectrum. The main deviation (c) is (CK) = 1.4. In panels (b) and (d), the poten-
is at wavenumbers near k = 60, the cutoff wavenumber, tial energy spectra are drawn. In these panels the small
and this is to be expected from previous experience with scales were fit to the Corrsin-Obukhov spectrum to de-
the cusp model (cf. Lesieur and Rogallo, 1989). The termine the appropriate Corrsin constant. In panels (b)
spectrum below wavenumber 20 is naturally far more and (d) the Corrsin constants used to draw the model
irregular than that above due to the much smaller num- Corrsin-Obukhov spectrum were CO = 0.83 and 0.8 re-
ber of modes in the lower spectral bands. If we neglect spectively. In all panels the model buoyancy range

the first few wavenumbers, then there is some evidence spectrum drawn is 0.2N 2k- 3 . Thus the Kolmogorov
here for a steeper spectral range for wavenumbers below constant found here is somewhat smaller than the em-
about k = 20, that is for scales larger than about 1 m, pirical values of 1.5 and the Corrsin constant is some-
at least in the frames that correspond to times during what larger than the empirical value of 0.67. Never-
the breaking of the wave (first four panels). In the af- theless, the values are remarkably close to the empiri-
termath of breaking, the spectra tend to be somewhat cal values, given that the spectral width of the inertial
flatter (the last four panels). The best representative range here only covers wavelengths from about 1 me-
of the transition between buoyancy and inertial range ter to about 33 cm. Also the near collapse of the three
is found in panel (c), which corresponds to a time when kinetic energy spectra for small scales is encouraging.
the enstrophy is near a local maximum. Here the buoy- Thus it seems that the subgrid scale model is work-
ancy range spectrum makes a reasonably good fit in ing well at small scales and that the dynamics of the
the range of scales from about 4 m down to about 1 m. transition from anisotropic buoyancy to the isotropic
From the forcing scale (20 m vertical) to about the 5 m inertial range is acting as imagined in theoretical mod-
scale, there is a dip in the energy that has also been seen els. Finally, we should note that the value of e from the
in the spectra from similar two-dimensional simulations simulations is about one third of the value observed by
of the decay of a standing wave (Bouruet-Aubertot et al. Alford and Pinkel (2000) associated with values of N =
1996). 3 cph. This appears quite reasonable given the level

In this experiment it appears that the expected spec- of modeling we have had to employ for the forcing and

tral signature of a transition between a buoyancy range subgrid scale vortices.

at large scale and the inertial range at small scale oc- Besides the kinetic and potential energy spectra, we



160 CARNEVALE ET AL.

(a) (b)

(c) (d)

(e).

(g) (h)

1 e-2

le-3.

1 e-4

le-5-

1 10

Figure 3. Kinetic energy spectra for the v component of the velocity during one cycle of the forcing. The dashed
lines correspond to the Kolmogorov spectrum (1/3)CKg2/ 3 k- 5/3 with CK = 1.5 and the saturation spectrum
0.2N 2k-3. The time interval between frames is ATF/7 and the first frame corresponds to time t = 11.39TF. These
are log-log plots of E(k) in units of N 2 (L/27r)3 vs. k in units of 2ir/L. All plots have the scales as indicated in
panel (g).
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(a)

Figure 4. A breaking event visualized on the p = P0 isopycnal. These axe enlargements of the images shown in
the composite Figure 2 in panels 3 and 4, corresponding to times (a) 11.68 and (b) 11.82 TF (one seventh of a
forcing period apart).
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Figure 5. (a) Kinetic energy spectra for all three components of the velocity at time t = 11.68TF. The thick long
dashed, solid and short dashed lines correspond to the energy spectra for the u,v, and w components respectively,
The thin solid lines correspond to the Kolmogorov spectrum (1/3)CKE2 /3 k- 5/ 3 with CK = 1.4 and the saturation
spectrum 0.2N 2k- 3 . (b) Potential energy spectrum at time t = 11.68TF. The thick solid line corresponds to the
potential energy spectrum. The thin solid lines correspond to the Corrsin-Obukhov spectrum CoCpe- 1 / 3k-5/ 3 with
C0 = 0.83 and the saturation spectrum 0.2N 2 k- 3 . (c) As in (a) but for t=11.82 TF and CK = 1.4. (d) As in (b)
but for t=11.82 TF and C, = 0.80.
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can also find predictions for the buoyancy flux spectrum
in both the theory of Lumley-Shur (cf. Lumley 1964,
1967, Phillips 1967, Weinstock 1985) and the theory 4

of Holloway (1983, 1986). The modal spectrum of the
buoyancy flux can be written as 2

-gi? < Wkk > /PO. (19)

If this quantity is positive, then for wavevector k there
is conversion of potential energy to kinetic energy, and
vice versa if it is negative. -2

The prediction of the Lumley-Shur theory for the
buoyancy flux spectrum in the buoyancy and inertial
ranges is BF(k) -6 (a)

BF(k) = -2D O-° (1 + D(kb/k)4/3) (kb/k)7 /3 (20)
kb -8

where kb is as defined in (4) and D is a constant. Lumley
(1964) assumed the buoyancy flux to be negative and, -10
hence, D to be positive. In displaying his final result, 1 10

Lumley incorporated D into his definition for kb, but 10.
we will leave it explicit. Lumley's prediction of negative
buoyancy flux through the buoyancy and inertial ranges
is just the opposite of what we have found numerically
for our wave-forced problem. All of the ingredients for
an alternative prediction of the buoyancy flux are given
in Holloway (1983), and based on this we have derived
the same prediction as given in (20, but with the sign
of D clearly arbitrary (for details see Carnevale et al., BF(k) (b)
2001).

In Figure 6a, we plot the buoyancy flux spectrum
from our simulation as a function of k. This is a time
averaged spectrum, where we have averaged over a pe-
riod of 6TF, with time increment of O.1TF. The time
averaging is necessary to remove temporal fluctuations
in the large-scales. Note that the buoyancy flux spec- 0.1
trum is negative for large scales (1 < k < 3), and pos-
itive for smaller scales. This implies a transformation
of kinetic to potential energy at large scales (closest to 10

the forcing scale k = v2_) and a transfer of potential k

to kinetic energy at all smaller scales. Since our ob- Figure 6. (a) Graph of the buoyancy flux spectrum
served buoyancy flux spectrum is positive through both averaged over 6 periods of the forcing, with 10 samples
the buoyancy and inertial ranges, it can be compared to per period. (b) as in (a) but only the positive portion of
the theoretical prediction given by (20) only by choos- the spectrum plotted in log-log format to compare with
ing a negative value for D. To define the constant D, the theoretical spectrum of equation (20) with negative
we note that the wavenumber where the buoyancy flux coefficient D. The result from the simulation is repre-
vanishes is determined by D. Here we shall choose D sented by the thick line, while the theoretical spectrum,
so that the zero value occurs at k = 3.5 (corresponding based on EO = 9 where the overbar represents time av-
in our simulation to a wavelength of 5.7 m) since our eraging, is drawn as a thin line. All graphs in (a) and
buoyancy flux was found to vanish between k = 3 and (b) are normalized by E/Kb.

k = 4. The theory will apply only above this wavenum-
ber, and we can think of this as the lower limit on the
buoyancy range, or the upper wavenumber of the Gar-
rett Munk spectrum in the schematic shown in our in-
troduction. To compute kb, given by (4), we use the
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time averaged dissipation rate E. Thus all parameters that they identified with the buoyancy range, and also
in the theory are determined by the wavenumber where that the flux followed a k- 7 / 3 spectral law in a run with
the buoyancy flux vanishes and the values of N and i' grid resolution 2562 and a slightly steeper law at reso-
(in this case kb M (N 3/e)1/ 2 ; 34.1). The resulting the- lution 5122 (note that those simulations did not include
oretical buoyancy flux spectrum is compared in Figure an inertial range).
6b to the results from our simulation. For wavenum- There was some discussion at the 'Aha Huliko'a
bers in the buoyancy range, the match between theory meeting about the possibility that the sign of the buoy-
and simulations is reasonably good. For the theoreti- ancy flux found in these simulations is affected by the
cal curve, the decay with k is approximately k- 7/ 3 for type of forcing used. Our forcing inputs both potential
all k above about 10. The simulation data follow the and kinetic energy, while it may be more suitable to con-
theoretical curve fairly well up to about wavenumber sider a source of kinetic energy alone in these problems.
20, where the simulation spectrum begins to deviate If there were no explicit external forcing of the density
from k- 7 / 3 , and is clearly much shallower than this for evolution, then the net buoyancy flux (averaged over
k > 30. This shallowness of the simulation spectrum time) would have to be negative to balance the drain
for k greater than about 30 is probably an indication of potential energy due to diffusion. This however does
that the buoyancy flux is not captured properly by the not mean that the buoyancy flux would have to be nega-
SGS model near the high wavenumber cutoff. The cusp tive for all scales. Further simulations would be helpful
model viscosity grows rapidly with k for wavenumbers to define how the buoyancy flux spectrum varies as the
above about k = 30 and is largest at kmax. This is mix of kinetic and potential energy sources are changes.
just the range where our buoyancy flux spectrum be-
comes very shallow. It is very possible that the artificial Structures in regions of high strain rate
damping of the high k modes that the model performs
to mimic transfer of energy beyond kma, does not allow The main structure of interest in the buoyancy range
for the proper treatment of the buoyancy flux in that evident in the density isosurfaces presented in the last
region. But this is not unexpected for such a subgrid- section is the overturn produced by the curling over of
scale model. the isosurface in a manner familiar from surface wave

Positive buoyancy flux for small scales has also been breaking. The overturning region shown in the breaking
found in other simulations. In direct numerical simula- wave illustrated in Figure 2c has a vertical scale of about
tions (i.e. simulations without subgrid scale modeling) 2 meters. This is similar in size to overturns found
of forced stratified turbulence in both two and three- in oceanographic measurements in the buoyancy range.
dimensions, Holloway (1988), and Ramsden and Hol- Alford and Pinkel (2000) made an inventory of more
loway (1992) showed that the buoyancy flux was nega- than 2200 overturns. They found a median Thorpe
tive only at large scales and positive at small scales. scale, a measure of the vertical extent of the overturn, of
These results were interpreted as meaning negative 1.88 m. Note that this is not greatly different from the
buoyancy flux for k < kb (i.e. in the buoyancy range) scale suggested by the transition point in the spectra
and positive buoyancy flux for higher k. However, the shown in Figure 5, where the associated length scale is
forcing used in their simulations was spectrally fairly about 1.2 m. Since the observational data are primarily
broad, and it would not be inconsistent with their re- one-dimensional in space, it is difficult to form a three-
sults to say that the buoyancy flux was negative at the dimensional image of those overturns. The ability to
strongly forced modes and positive for smaller scales as perform three-dimensional analysis of such structures
in our findings. Additionally, we have repeated our nu- is one of the benefits of numerical simulation.
merical simulations with a finite difference code using Examining the full density field more thoroughly, we
a Smagorinsky eddy viscosity, a very independent test, also find interesting structures of a rather different na-
and also found positive buoyancy flux through the buoy- ture than those associated with strong vertical shear.
ancy and inertial ranges. In their finite difference LES These can be represented well by the deformations of
study of shear driven stratified turbulence, Kaltenbachet the density surfaces that are the flat nodal surfaces of
et al. (1994) also found positive buoyancy flux at small the forcing wave. We shall just refer to these surfaces as
scales and negative at large scales, although we must the nodal surfaces even when perturbed and deformed
note that the region of negative buoyancy flux in their by eddies. The most basic motion of the fluid in the
simulations is spectrally very broad compared to ours. nodal surfaces is alternately toward and away from the
In two-dimensional flow simulations of the decay of a centers of high strain; however, the combination of the
standing wave of just the type that we use for forcing large-scale background straining motion and small-scale
our flow, Bouruet-Aubertot et al. (1996) found that the eddies produces localized deformations of the nodal sur-
buoyancy flux was positive through most of the range face that can result in overturning and mixing in a man-
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(a) (b)

(c) (d)

(e)

Figure 7. The evolution of three density isosurfaces (g*(p - Po)/Po = 0, 7,r/2, 7r) showing the evolution of 'spouts'
from a 'nodal surface' and their subsequent collapse with considerable broadening and mixing. Times represented
are t = 12.1, 12.4, 12.5, 12.7, 12.8, and 13.1 TF.
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ner different from the overturns discussed in the last perturbations pull structures from the nodal planes ver-
section. By plotting simultaneously three density iso- tically, these elements are subject to advection due to
surfaces (one 'nodal surface' and the most strongly per- the large-scale straining motion of the forcing wave. At
turbed isosurfaces above and below it) for a sequence of times and positions where the straining is highly di-
times during the forcing cycle, we can get some under- lational in the vertical, these deviations from the flat
standing of the nature, formation, evolution, and fate plane elongate vertically and narrow horizontally, form-
of these structures. In Figure 7, the sequence proceeds ing 'spouts.' Then, during the vertically compressional
from left to right, top to bottom. We have shifted our and horizontally dilational phase of the forcing, the
view of the computational domain by an amount in the spout is elongated horizontally creating regions of con-
vertical sufficient to center the upper 'nodal surface' in vectively unstable overturned fluid. Note that if the
the image. Above and below the 'nodal surface,' the large-scale forcing were the only field acting on the
most strongly displaced isosurfaces are shown. The up- spout, than the growth of the spout would simply have
per and lower isosurfaces move vertically but always been reversed when the sense of the straining motion
in opposite directions at any horizontal location. The was reversed. Thus the presence of the eddy field must
combined effect of the motion of these surfaces above play an important role in this irreversible process. The
and below the 'nodal surface' produces vertical 'dila- distortions of the spout by the eddy field are enhanced
tion' and 'compression' centered on the 'nodal surface' during the horizontally dilational phase of the evolu-
without producing large-scale sinusoidal displacement tion.
of that surface. In panels (a), (b) and (c), the up-
per/lower surface is moving upward/downward in the Internal-wave packets
middle of the domain (i.e. at y = 0, where y is the hor-
izontal coordinate), and oppositely at the left and right The observations of Alford and Pinkel (2000) show
ends of the domain. This is associated with the verti- vertically propagating structures at depths from 150 to
cal straining of the nodal surface in the middle and at 350 m which they suggest may be internal wave pack-
the left and right ends of the domain. In panel (b) the ets. These structures have vertical extent of about 50 m
isosurface 'erupts' with elements moving up and down with internal vertical wavelengths of about 12 m and are
along a midline pointing into the plane. The eruption associated with overturning events with vertical scales
reaches its maximum extension when the upper and of about 2 m. Recent theoretical analysis by Thorpe
lower surfaces stop their motion, and reverses direction (1999) provides a criterion for determining whether the
around the time of panel (c). At y = 0 on the 'nodal small-scale turbulence generated by the overturns in a
surface' this is a time of maximum vertical dilational packet will be left behind in just small patches or in con-
strain but zero strain rate (where 8w/az is the vertical tinuous 'scars' much longer than the size of the packet.
strain rate). The structures formed by these eruptions Stimulated by these developments, we have embarked
represent localized intrusions of heavy fluid into light on a numerical investigation of internal wave packets.
fluid and vice versa. We shall refer to them as 'spouts.' Assuming a constant background Brunt-VWisiild fre-
As the upper and lower isosurfaces move back toward quency N and ignoring the effects of the earth's ro-
the 'nodal surface,' the sense of straining motion is re- tation, the intrinsic dimensional frequency for internal
versed and the spouts that were formed are flattened. waves is
This causes a spreading out of these structures, which =N-h (21)
in some cases results in tossing elements of the spouts k
to the right and left of the midline. This leads to the The observed frequency for one of the wavepackets in
kind of pattern seen in panel (e) which is in part an the Alford and Pinkel (2000) data is 4 cph. This is
elongated horizontal structure as opposed to the elon- higher than the ambient N z 3 cph. Since 0max = N, it
gated vertical structures originally produced during the is assumed that the observed frequency for this packet
vertically dilational phase of the large-scale straining is the sum of the intrinsic frequency plus a Doppler
motion. The final panel (f) shows the isosurface a short shift. To predict this shift, it is necessary to know the
time after the upper and lower surfaces have again re- wavelength of the packet, the magnitude of the ambient
versed their direction of vertical motion. This is a phase current and its direction relative to the packet propa-
of the motion near to that of the initial panel (a), but gation direction. Alford and Pinkel (2000) suggest that
now there is a mixed patch of fluid at the mid section the intrinsic frequency for their packet with observed
(y=0) of the 'nodal surface.' frequency of 4 cph is near 0.14 cph which leads one to a

To summarize, we can say that the 'spouts' origi- wavelength of 180 m. This suggests that the horizontal.
nate from small-scale deviations of the nodal surface wavelengths in both directions are much larger than the
created by turbulent flow at the nodal surface. Once vertical wavelength. For our numerical modeling, this
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represents a difficulty. We are reluctant to introduce wave packet. For example,
anisotropic grids for fear of the distortions that might
result, especially when applying simple sub-grid scale (w, p') = Re f G(k - ko)ekei(k'r-t)d3k, (24)
models. Thus, in this preliminary work, we decided to
consider only the case in which horizontal and vertical with
wavelengths were equal. The corresponding intrinsic G(p) - A exp (-a2 2 2
frequency would then be about 2 cph which would still G A

be consistent with the observed packet, just requiring where a, b, and c are length scales, represents a propa-
less of a Doppler shift to match the observed frequency. gating ellipsoidal packet. A slight generalization based

As for the amplitude of the observed packets, this on simple coordinate rotations will also permit an arbi-
can be given in terms of the peak magnitude of the ob- trary choice for the orientation of the ellipsoidal enve-
served strain rate Ow/Oz. The maximum value of verti- lope relative to the crests internal to the packet. Within
cal strain rate in the Alford and Pinkel (2000) observa- the envelope, the vorticity and density fields will have a
tions is approximately N, and in the case of the particu- phase velocity in the direction of k0 and group velocity
lar packet discussed above, it seems that the maximum c9 = Vkak, (26)
is about 0.38N.

In what follows, we will examine the evolution of which is perpendicular to the phase velocity.
a particular wave packet with two-dimensional simula- By varying the dimensions a, b and c, we can change
tions. In an attempt to reproduce the kind of behavior the shape of the packet as needed. A likely candidate
evident in the observations, we used simulations in a for the packets whose effects are observed in Alford and
domain of 200 m in both width and depth. We used Pinkel's (2000) data would suggest that at least one of
a packet with non-dimensional wavenumbers of 12 in these lengthscales is very large. For the present calcu-
both directions, corresponding to vertical and horizon- lations we take a to be infinite. Then we chose b and
tal wavelengths of (200 m)/12 ;z 17 m. Our 2D simula- c and the orientation of the system to be such that the
tions had an effective resolution corresponding to a cut- envelope is an ellipse with major axis aligned along the
off wavelength of ; 0.8 m. To follow this phenomenon direction of propagation. Other choices may also be of
in DNS with all relevant scales well resolved would re- interest, but that will be explored in future work. With
quire resolution from 200 m down to a few cm, which the ellipse as chosen, the phase velocity is directed along
is somewhat impractical. Since the subgrid scale model the short axis and the group velocity along the long
used in the 3D simulations is not appropriate in 2D, axis. In a numerical simulation, the packet can only
we had recourse to hyperviscosity (with the Laplacian be approximated, with the integral replaced by a dis-
taken to the eighth power). The simulations illustrated crete sum of wavevectors. By using (24) and (25) with
here are from a spectral code dealiased with the 3/2 t = 0, we are able to construct the initial condition for
rule (Orszag 1971). Although there are 768 wavevec- a packet that is both reasonably confined in space and
tors used in each direction, after application of the 3/2 well resolved internally.
rule this leaves only 512 active modes in each direction. The first issue that we need to address is the disper-

sive spreading of the wave packet. Simple arguments
Linear dispersion of packets suggest that the physical extent of the wave packet will

grow as Ac 9 t in the direction of the group velocity,
The linearized version of the Boussinesq evolution where Ac9 represents the spread in group velocities cal-

equations can be used to obtain a model of the inter- culated for the individual wavevectors that contribute
nal wave packet. The vorticity and density of a plane significantly to the wave packet. We can make some
internal wave can be written dimensionally as crude dimensional estimates for the rate of dispersion

by setting cg - N/ko and Acg - (N/k')Ako, where
(wP, w, wz, p') = Aek exp i(k r - at), (22) Ak0 measures the spread of wavenumbers in the packet.

If we call Ax0 , the initial length of the wavepacket, then
where A is an arbitrary amplitude and e is the eigen- the change in the size of the packet can be crudely taken
vector as

Ax - Axo = Acgt. (27)
ek = (gkky/Nkh, -gkk,/Nkh, 0, PO). (23) The packet would then double in size by a time td -

Taking a linear superposition of such waves distributed Axo/Acr , and the distance that the packet can travel

continuously in wavevector space and centered on a par-

ticular wavevector, say ko, would produce an internal x/Axo - ko/Ako. (28)
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(a) (b)

(c) (d) ------

Figure 8. Contours of the magnitude of the pertur-
bation density Ip'/pol from a simulation of the linear
propagation of a wavepacket. The domain size is 200
m on each side. The vertical axis is depth. The only Figure 9. Contours of p/po from a simulation of the
contour level drawn is that at 0.5 of the maximum field linear propagation of a wavepacket. The domain size is
value. The time sequence of the panels is (a) t=0, (b) 200 m on each side. The vertical axis is depth. The time
t=3 hr, (c) t=6 hr, and (d) 11 hr. sequence of the panels is the same as in Figure 8. The

contour increment is such that the vertical separation
between unperturbed isopycnals is 8 m.

For the packet used in the simulations this predicts a arbitrarily in this purely linear simulation, we may sim-
doubling after propagation of about 200 m. ply assign an amplitude to see the effect of such a packet

In Figure 8, we show the evolution of the density on the full density field. This is done in Figure 9. The
perturbation field during the propagation of our packet amplitude used represents fluctuations in Ow/Oz about
following purely linear dynamics. In each panel, only five times the maximum actually observed in the Alford
the contour level corresponding to 0. 5 1p'/pol is drawn. and Pinkel (2000) data. Nevertheless, we have used this
Positive and negative values have not been indicated, packet with exaggerated amplitude to more clearly il-
but clearly the sign of p' will alternate from one wave lustrate the nature of the linear propagation. In such
crest to the next. We see the packet propagates along a strong packet, there are regions of strong overturn-
the diagonal. This is in agreement with the fact that the ing, which, if the packet is not propagating too rapidly,
wavevector is k = (12, 12) and that the group velocity would develop convective instability under the full non-
is perpendicular to this. It is less obvious from the linear dynamics.
few panels that we can include here that the phase of
the waves within the packet advances in the direction Nonlinear propagation of packets
of k. The average speed of the packet in propagating
from one corner of the domain to the opposite comer Having determined that our packet propagates cor-
is correctly given by Ic9g. Furthermore, we see that the rectly under linear dynamics, we then investigated its
width and length of the packet grow to a little more evolution with the complete Boussinesq equations. The
than double their original values in the time it takes to amplitude of the observed packet discussed in the intro-
cross from one corner of the domain to the other, and duction is such that the maximum value of the strain
this is correctly predicted by the formula (28). During rate aw/lz is about 0.38N. With the packet amplitude
the period of evolution illustrated, the peak amplitude set to match this value as its maximum 8w/Oz, we per-
of the packet decays to 25% of its initial value, formed the simulation illustrated by contour plots of

Although the amplitude of the packet can be changed p'/p in Figure 10. This figure should be compared to
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Figure 10. Contours of the magnitude of the pertur-
bation density Ip'/po I from a simulation of the nonlinear
propagation of a wavepacket with max aw/az ; 0.38N. Figure 11. Contours of P/Po from the same simulation
The domain size is 200 m on each side. The vertical axis as represented in Figure 10. The domain size is 200
is depth. The only contour level drawn is that at 0.5 m on each side. The vertical axis is depth. The two
of the maximum field value. The time sequence of the times illustrated correspond to the first and last times
panels is the same as in Figure 8. of Figure 10. The contour increment is such that the

vertical separation between unperturbed isopycnals is 8
m.

the corresponding figure for linear evolution, Figure 8.
The times represented are the same in each figure. By
the time of panel (b) a clear asymmetry in the form we display the contour plots for the perturbation den-
of the packet has developed in the nonlinear case and sity at the same times as in the previous figures. We see
there is some clear distortion of the packet in th6 fi- that there is some early production of small scales that
nal panel. Nevertheless, the overall evolution of this are evident in the wake of the packet. By t = 6 hr the
nonlinear packet is not very different from the linear packet itself has become badly distorted, and by t = 11
case. This packet is so weak that the initial condition hr, it has degenerated into small-scale structures, al-
is not overturning anywhere and the Richardson num- though these still retain to some extent an organization
ber is above 1 everywhere. Thus, the classical criteria and alignment related to the original structure of the
for convective instability and shear instability are not packet. To better illustrate the decay of this packet,
satisfied in this packet. This continues to be the case we display contour plots of the full density field from
throughout the simulation in spite of small-scale gen- t = 2.5 hr to t = 4.8 hr in Figure 13. Each frame is an
eration by nonlinear wave-wave interactions. An idea enlarged image centered on the wave packet, showing
of how weak this packet is can be obtained graphically only a portion of the domain (a square of size 200/3
from the plots of the density contours as illustrated in m on a side). In panel (a) we see an early stage in
Figure 11. which the wave is overturning at points, but there has

The next case that we will treat is one for which the not yet been any strong production of energy in scales
amplitude of the packet is just above the threshold for smaller than 2 m (note that the spacing between the
overturning. The amplitude of this packet in terms of its unperturbed isopycnals is 2 m). There are four rela-
maximum strain rate is Ow/Oz = 0.76N. In Figure 12, tively strong crests evident in panel (a). These crests
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not continue indefinitely. The strength of the packet is
both dispersed and dissipated, so that by t = 210N-1

41%, the process of scar formation has ceased.

"We have also performed 3D simulations of the prop-
agation of these wave packets. The general evolution
exhibited in the 2D simulations is also found in 3D,
although in 3D we did not have sufficient resolution ad-
equately capture the 2 m overturns. Further details can
be found in Carnevale and Orlandi (2000).

__Theory of packet evolution

We have addressed here questions about the longevity
of wave groups. A theory for the evolution of the packet
"envelope has been developed by Shrira (1981) via mul-
tiscale analysis in both space and time. His result for
the evolution of the amplitude A of the packet in the4 •two-dimensional case studied above is

" iA,- + akVks, Ayy + 2ukk.Ayz + uk k.Azz}

61 'kkk, AIyy + 3 okvkvk. Ayyz + 3 0`kkýk. Ayzz

+Oak,~ck~kAzz} = -i'yA(AA*• - A'AS), (29)

Figure 12. Contours of the magnitude of the pertur-

bation density Ip'/po I from a simulation of the nonlinear where ky and kz are components of the central wavector
propagation of a wavepacket with max Ow/Oz ; 0.76N. of the packet, a is the intrinsic frequency corresponding

The domain size is 200 m on each side. The vertical axis to the central wavevector, s is the coordinate in the
is depth. The only contour level drawn is that at 0.5 direction of propagation of the packet, 8/87- = 8/at +

of the maximum field value. The time sequence of the CgO/5s, cg is the magnitude of the group velocity, and

panels is the same as in Figure 8. -y= k3 /(cak~k•). (30)

are advancing from bottom-left to top-right in these fig-
ures. The weakest crest (bottom-left) is just entering The typical equation that arises for the evolution of a
the packet in panel (a). In the linear evolution as each wave-packet envelope is the cubic Schroedinger equa-
crest passes through the packet from bottom-left to top- tion which is significantly different from (29). It turns
right, its amplitude first increases and then decreases. out that the term corresponding to the nonlinearity in
As envisioned by Thorpe (1999), the crests amplify as the cubic Schroedinger vanishes identically here due to
they move toward the center of the packet and break the fact that a plane wave cannot interact with itself.
leaving small-scale perturbations behind that link up Thus Shrira had to go to third order in the multiple
with the 'debris' produced by the passage of previous scale analysis to obtain the first contributions of the
crests. The period of the sequence of panels shown here nonlinearity to the evolution. This still involves a cubic
is long enough for the weak crest on the lower-left side of term for the nonlinearity, but now not the simple AIAI2

the packet in panel (a) to move completely through the of the cubic Schroedinger equation, and the presence of
packet, finally becoming the weak crest on the upper- the third order spatial derivatives from the linear terms
right side. In the case we have simulated here, the crests further complicates matters. Notice that the coefficients
do produce overlapping zones of small-scale perturba- depend in magnitude and sign on the orientation of the
tions that form a somewhat continuous scar, a possiblil- central wavevector of the packet. Thus we can antici-
ity suggested by Thorpe (1999). One should note, how- pate interesting results as this wavevector is varied. In
ever, that during the period when a particular crest is addition, there are nonlocal nonlinear terms that arise if
actually breaking, the overturning and small-scale pro- the flow is three dimensional that further greatly com-
duction is not uniform along the length of the crest, plicate the evolution. In future work, we plan to in-
as assumed in Thorpe's idealized model, but rather ap- vestigate the evolution of the packet analytically based
pears in spots along the crest (see panels (c) and (d)). on Shrira's equations, and make a comparison with our
Also the breaking and subsequent scar formation does numerical results.
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(a) (b)
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(c) (d)

(e)(f)

Figure 13. Contours of P/Po from a simulation of the nonlinear propagation of a wavepacket with initially max
Ow/Oz 0.76N. Only a portion of the computational frame is shown, and this corresponds to a square 200/3 m
on each side. The contour increment is such that the vertical separation between unperturbed isopycnals is 2 m.
The times corresponding to the panels are (a) 2.5, (b) 2.9 (c) 3.5, (d) 3.9, (e) 4.4 and (f) 4.8 hr.
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