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From stirring to mixing of momentum: cascades from

balanced flows to dissipation in the oceanic interior

James C. McWilliams1 , M. Jeroen Molemaker', and Irad Yavneh2

Abstract. Under the influences of stable density stratification and Earth's
rotation, large-scale flows in the ocean and atmosphere have a mainly
balanced dynamics---sometimes called the slow manifold-in the sense that
there are diagnostic hydrostatic and gradient-wind balances that constrain
the fluid acceleration. The nonlinear balance equations are a successful
approximate model for this regime, and we have identified mathematically
explicit limits of their time integrability. We hypothesize that these limits
are indicative, at least approximately, of the transition from the larger-scale
regime of inverse energy cascades of anisotropic flows to the smaller-scale
regimes of forward energy cascade to dissipation of more nearly isotropic
flows and intermittently breaking inertia-gravity waves. In the oceans these
regime transitions occur mostly in the scale range of 0.1-10 km-in between
the mesoscale and fine-structure--where Rossby (Ro), Froude (Fr), and
Richardson (Ri) numbers are typically neither small nor large. In pursuit of
testing this hypothesis we have revisited several classical problems, including
gravitational, centrifugal/symmetric, elliptical, barotropic, and baroclinic
instabilities. In all cases we find definite evidence, albeit still incompletely
understood, of fluid-dynamical transitions in the neighborhood of loss of
balanced integrability.

Introduction topography, with subsequent wave propagation into the
interior and a wave-dynamical cascade (sometimes in-

The general circulation of the ocean is forced by sur- volving breaking) down to dissipation at small scales.
face fluxes of heat, water, and momentum primarily at Each of these routes to dissipation involves an extrac-
large space and long time scales. The circulation has tion of energy from the circulation near the vertical
comparably large and long scales, as well as important boundaries, although the bulk of the energy resides
smaller ones associated with equatorial zonal and lat- in the vertical interior. A more local route is directly
eral boundary currents and with the dominant insta- through the interior, turbulent cascade dynamics of the
bility modes at mesoscales. All of these circulation el- circulation. In oceanic general circulation models, the
ements approximately satisfy geostrophic, hydrostatic, local route to dissipation is implied by the use of eddy
and incompressible dynamical balances. diffusivities to parameterize this cascade. The purpose

How does the energy dissipation occur for the gen- of this article is to examine the mechanism for the local
eral circulation in an equilibrium balance with the gen- route to dissipation, without here trying to assess the
eration by surface fluxes? Some of the dissipation un- relative contributions among these alternative routes.
doubtedly occurs within turbulent boundary layers near Our conceptual view of the mechanism is the follow-
the surface and bottom. Some dissipation also occurs ing:
through creation of internal gravity waves by flow over

Large- and mesoscale circulations typically satisfy
'Institute of Geophysics and Planetary Physics, University of arbaland dynamca s di ne boic h

California at Los Angeles, Los Angeles, CA 90095-1567, USA
2 Department of Computer Science, Technion, Haifa 32000, IS- have little interaction with the inertia-gravity wave

RAEL field;
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60 McWILLIAMS, MOLEMAKER, and YAVNEH

balanced turbulent cascades are very inefficient in gence of the horizontal momentum balance is approxi-
energy dissipation; mately

there are explicitly specifiable limits to the regime V 2qS V• fVi + 2[Vx.)yy -_ V)2Y, (3)

of balanced dynamics that are violated sometimes

for the circulation; which is called gradient-wind balance (V is the hori-

violation of these limits leads to energy transfer zontal gradient operator); and the horizontal velocity is

to unbalanced motions; weakly divergent and thus can be approximately repre-
sented by a streamfunction,

turbulent cascades are much more efficient in their
dissipation. u ; -0y and v ; 0.. (4)

In this view the important bottleneck in the local
route to dissipation is loss of balance and its evolution- The maximal truncation of the incompressible (Boussi-

ary consequences. nesq) equations consistent with these approximations

Confirming or refuting this hypothesis is quite chal- and conservation of either energy (in Cartesian co-

lenging, since it involves the connectedness of turbulent ordinates, (x, y, z)) or potential enstrophy (in isopyc-

cascades spanning several dynamical regimes. Even di- nal coordinates, (X, Y, b)) is called the balance equa-

agnosis of the degree of balance can be subtle. In lieu of tions (Lorenz [19601; Gent and Mc Williams (19841).

making a more general test of the hypothesis as yet, here (Many alternative models have been proposed for bal-

we focus on the special situation of the linear instability anced dynamics; among the better ones, their similari-

of balanced steady currents in a rotating, stratified fluid ties seem more important than their differences.) The

in relation to the conditions for loss of balance. Since balance equations contain no inertia-gravity wave solu-

fluid instabilities have been the subject of much prior tions; so they are often taken as a dynamical-systems

research, we will tell the story from both historical per- model for the (advective) slow manifold. They have

spectives of early discovery and personal perspectives second-order asymptotic accuracy as Ro -, Fr -+ 0,
of the implications for the hypothesis above-skipping whereas the traditional geostrophic balance and quasi-
over most of the literature in betweens geostrophic equations have only first-order accuracy

(Gent and McWilliams [1983]). They have been shown

in many analyses to accurately represent the observed
Balanced Dynamics state and evolution of large-scale flows in the atmo-

The essential basis for the approximations of bal- sphere and ocean; for example, they often are used for

anced dynamics is velocity anisotropy. In a rotating, initialization of weather forecasts, even ones for hur-

stratified fluid with Coriolis frequency f and Brunt- ricanes. An important aspect of this accuracy is the

V~iisild frequency N and away from boundaries, the weakness of inertia-gravity wave generation by balanced

evolution from general initial conditions or forcing by motions when Ro and Fr are not large.

the process called geostrophic (or balanced) adjustment The advective dynamics of balance or quasigeostro-
leads to a local anisotropy with u, v >> w, while radi- phic equations-called geostrophic turbulence-yields
ating away inertia-gravity waves. Here z and w are the an inverse turbulent cascade of energy towards larger

coordinate and velocity components in the vertical di- scales in (x, y, z), hence away from dissipation by molec-

rection, antiparallel to gravity, and (x, y) and (u, v) are ular viscosity at small scales, and a forward cascade of
their horizontal counterparts. The condition for this to potential enstrophy (i.e., variance of potential vortic-

occur are that the Rossby and Froude numbers, ity) to its dissipation at small scales (Charney 11971];
McWilliams et al. [19941). (This behavior is analogous

Ro = V/fL and Fr = V/NH, (1) to the turbulence in a two-dimensional fluid.) In the
enstrophy inertial range, Ro and Fr are invariant as

are not too large (where V, H, and L are characteristic the scale decreases, at least in the limit of Ro, Fr -+ 0.
values for (u, v), z, and (x, y)). Under these conditions There is as yet much less experience with balanced tur-
the vertical momentum balance is approximately hydro- bulence at finite values of Ro and Fr, but available
static, (2) solutions indicate that it is only modestly more dissipa-

tive of energy (Yavneh et al. [19971). It remains an open
(0 = pP/Po is the geopotential function, b = g[1 -P/Po] question how consistently Ro and Fr avoid increasing in
is the buoyancy, and Po is the mean density); the diver- the forward cascade, either in the balance equations or
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more fundamental fluid dynamics: at small scales does Instability and Cascade
the cascade in balanced turbulence generate inconsis-
tencies with its justifying assumptions and how leaky We now ask what happens when there is a loss of

is the slow manifold to unbalanced motions? Never- balance as defined above. Obviously any further in-

theless, our present understanding is that the balance tegration of the balance equations is precluded. So

equations do not provide an efficient route to energy dis- the question must be answered in a more fundamental
sipation away from boundaries: they imply more stir- fluid dynamics, such as the incompressible Boussinesq
ring than mixing for momentum. equations, which have no restriction on Ro and Fr for

their validity. In general, our expectation is that some
inertia-gravity waves and/or more nearly isotropic tur-

Loss of Balance bulence will be generated-instigating some degree of
enhanced dissipation-where there is a loss of balance.

An analysis for the solvability of the balance equa- However, the efficiency of their generation is uncertain,
tions is made in Yavneh et al. [1997] and McWilliams as is whether the subsequent evolution systematically
et al. [1998]. To be able to integrate forward in time departs from balanced dynamics or relaxes back to-
from a balanced state, several necessary conditions must wards it (e.g., as a geostrophic adjustment or selective
be satisfied everywhere within the domain. Where these cascade and dissipation processes). In the rest of this
are violated, there is a change of type of the partial article, we address the issue of generation and subse-
differential system and the initial- and boundary-value quent evolution only in a very particular context, viz.,
problem becomes ill-posed. For the balance equations the linear instabilities of rotating, stratified flows which
in isopycnal coordinates (i.e., Gent and McWilliams are steady, inviscid, balanced solutions of the Boussi-
[1984]) and f > 0, the conditions for loss of balance nesq equations. While this is far from the general cir-
are the following: cumstances of fluid evolution, it does provide a cleanly

posed question that also is one that can be answered
1. Change of sign of vertical stratification, N 2  in part by reference to the extensive literature on fluid

8b.

oz, instabilities.

2. Change of sign of absolute vorticity, A f +
C(z) = f + vx - uy (where the horizontal deriva- Instability Types
tives denoted by capital letters are in isentropic Now we attempt to interpret the known instabilities
coordinates); in relation to the conditions for loss of balance for ro-

tating, stratified flows where Ro and Fr are not large.
3. Change of sign of A - ISI (where S2 = (ux - It is probably unprovable that any such taxonomy of

vY) 2 + (vx + uy) 2 is the variance of the strain instability types can be complete and unique; however,
rate). after all the research that has gone into this topic, the

landscape has become fairly well mapped.
None of these conditions occurs in the quasigeostrophic
limit, since A, A - ISI -+ f + O(Ro) and N -+ No + Quasigeostrophic Inflectional Instability
O(Ro), where N0 (z) is the resting-state stratification.
Note the greater susceptibility of anticyclonic regions Consider the instability of a geostrophic parallel
(i.e., with (z)/f < 0) in the second and third con- flow U(y, z) with background stratification N0 (z) and
ditions; furthermore, note the greater susceptibility to Coriolis frequency f(y) in the quasigeostrophic limit,
the third condition, since A - ISI < A. The first and Ro, Fr --+ 0. Following Rayleigh [1880] and Drazin and
second conditions also are related to the potential vor- Howard [1966] and ignoring vertical-boundary effects,
ticity, q = AN2. Since potential vorticity is conserved one can derive a "Rayleigh theorem" from the potential
on parcels, except for mixing effects, there is thus an vorticity equation that a necessary condition for inviscid
evolutionary inhibition for an unforced flow to spon- instability of a non-symmetric (i.e., i9 # 0), normal-
taneously develop a violation of the first and second mode fluctuation is that the mean potential vorticity
conditions. However, there is no such constraint with gradient,
respect to the third condition, which indicates another
sense in which there may be a greater susceptibility to -2Q df u _Y U.,)5
the third condition. dy U (5)
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change sign within the domain. This is called an
inflection-point instability since it involves the hori-
zontal and/or vertical curvature of U; depending upon
which curvature is dominant, the instability is labeled 0_20

barotropic or barocinic instability. The unstable mode
is itself geostrophically balanced. This is the only type
of instability that occurs in the quasigeostrophic limit. 0 15
It has an analytic continuation to finite Ro and Fr,

where it can be expected to remain balanced over some
range of these parameters. Thus, its onset conditions 0 10
have nothing to do with the limits of balance, and it
represents a mode of stirring within balanced dynam-

005
ics.

Gravitational Instability
-1 0 -0 5 0~0 05 1 0

The condition for the onset of gravitational instabil- (A- $S00/f

ity in the limit of vanishing viscosity is N 2 < 0 (Rayleigh
[1916]; Chandrasekhar [1961]). This coincides with thefirst condition for loss of balance, and the mode of insta- Figure 1. Growth rate, oa/f, for the elliptical flow (6),

maximized over vertical wavenumber. Curves are shown for
bility is unbalanced (e.g., the vertical momentum bal- /3/a = 0.25 (dashed), 0.11 (dotted), and 0.026 (solid). The
ance is non-hydrostatic). corresponding abscissa values for the second condition for

loss of balance are -0.6, -0.8, and -0.95 (see text).
Symmetric Centrifugal Instability

For a balanced, parallel flow U(y, z), the neces-
sary and sufficient condition for inviscid instability of
a parallel-symmetric perturbation is a change of sign
of potential vorticity q(y, z) (Hoskins [1974]). This co-
incides with the second condition for loss of balance.
(This is a 2D problem rather than a 3D one, and
McWilliams et al. [19981 show that the third condition . , -

is not germane in this situation.) For a balanced, ax- 0 1000'r

isymmetric, azimuthal flow U(r, z), the conditions for
the inviscid instability of an axisymmetric perturbation
are the change of sign of either the absolute vorticity 0 0100,
A or the absolute circulation C = ½fr + U (Rayleigh
[1916]; Ooyama [1966]). McWilliams et al. [1998] show
that these coincide with the second or third conditions,
respectively, for loss of balance in this case. Thus, the
boundaries for onset of symmetric centrifugal instabil-
ity, which has unbalanced growing modes, occur exactly
at the limits of balanced evolution. 0ooo00

-1 0 -05 00 05 10
(A-ISI)/f

Elliptical Instability

The inviscid instability of the balanced, elliptical,
two-dimensional, barotropic flow in an unbounded do- Figure 2. As figure 1, but with logarithmic ordinate. The
main, evident noise is because of intermittent underestimates of or

due to incomplete optimization searches over the very nar-
IQ(x, Y) ax2 + y2) , 1 > > 0, (6) row unstable bands in vertical wavenumber.

was originally analyzed for f = N = 0 (Pierrehumbert
[1986]; Bayly [1986]; Craik and Criminale [1986]) and
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later extended to Ro, Fr < oo by Miyazaki [1993].
The unstable modes occur in bands of the vertical 0

wavenumber. They have temporally oscillatory hori-
zontal wavenumbers and exhibit exponential growth av- 0.15
eraged over a wavenumber oscillation period.

The problem was revisited in Me Williams and Yavneh
[1998] from the perspective of loss of balance: ellipti- 010

cal instability disappears in the quasigeostrophic limit
and its onset nearly, but not precisely, coincides with
the third condition for loss of balance (see Figures 1-
2). The unstable mode is unbalanced. For this basic
flow the vorticity and strain rate are spatially uniform
and unequal in magnitude. The abscissa, (A - ISI)/f, -10 -0.5 0.0 0.5 1.0

= +1 in the quasigeostrophic limit, = 0 at the third (A-ISI)/f

condition for loss of balance, = -(a - 0) (a +)3) at
the second condition for loss of balance, and > +1 for Figure 3. Growth rate, a/f, for Taylor-Couette flow (7) in

cyclonic flows. Cyclonic elliptical flows are stable for a narrow gap, maximized over vertical wavenumber. Curves

S= O(1). are shown for the three gravest modes in cross-stream struc-
ture.

Taylor-Couette and Barotropic Instabilities
complex-conjugate pair); for the gravest unstable mode

Consider Taylor-Couette flow in the gap between two the resonance involves a pair of Kelvin waves propagat-
axisymmetric, rotating cylinders, ing cyclonically along each cylinder wall, and for the

B other modes, one of the Kelvin modes is replaced by

U(r) = A r + , (7) an inertia-gravity mode. Thus, the instability has an

unbalanced dynamics. An explicit formula can be ob-
which is a viscous steady solution commonly studied tained for the unstable growth rate of the gravest mode,
in laboratory experiments. The classical instability for
this flow is centrifugal (Taylor [1923]; Chandrasekhar e_/O e_ 2Y/(lX) (8)
[1961]), whose onset in the inviscid limit coincides with f

the second condition for loss of balance. In a neu- asymptotically as Ro = max j(z) I/f -÷ 0+ and
trally stratified fluid, this is the only type of linear in- X = (A - ISI)/f -+ 1- (with -y = 2 (analytically)
stability, since this profile does not have an inflection for the gravest mode and -y 3 (computationally) for
point. However, for a stably stratified fluid with small the higher modes; n.b., X is the abscissa in Figures 3-
Fr, this barotropic shear flow has another class of un- 4). This asymptotic regime is accurately realized even
balanced instabilities at finite Ro in the anticyclonic in the neighborhood of the third condition for loss of
regime (Molemaker et al. [2001]; Yavneh et al. [2001]), balance, which implies that there is an extremely rapid
but there is not any instability for the quasigeostrophic weakening of o with Ro and X in this neighborhood,
limit, Ro -+ 0, nor for cyclonic flows with Ro = 0(1). but not an abrupt cessation at any critical value near
For this new class an infinite but countable set of un- X = 0.
stable modes exist, which differ in their cross-stream Recently we have also solved the linear, inviscid sta-
structure, each with a different narrow band of verti-
cal wavenumbers. In Figures 3-4, the growth rates are bi ght p ob le f at b c aln
shown for the first three modes in the thin-gap limit
where 0(z) and S are nearly uniform and equal in mag- V(x) = V. exp(-a x), (9)
nitude. As with elliptical flow, the strength of the in-
stability strongly increases in the neighborhood of the in a uniformly rotating, stratified fluid in a semi-infinite
third condition for loss of balance. (And, in this case, domain (i.e., x > 0). This profile also does not have an
(A-SIl)/lf P -1 corresponds to the second condition.) inflection point. In addition to no normal flow at the
The instability can be shown to involve a resonance of boundary, we prescribe a radiation condition at a suffi-
shear-modified neutral modes (as required in any eigen- ciently distant location in the interior by matching the
value problem whose eigenfrequency is either real or a solution to an outwardly radiating, free inertia-gravity
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___________________wave,

0.1000 - = iku, (10)

where k is a cross-stream wavenumber determined from
"0"0100vertical and along-stream wavenumbers and eigenfre-

0.0oo00 quency using the dispersion relation of an inertia-gravity

wave. Again there are unbalanced unstable modes for
anticyclonic flows (i.e., V 0/f > 0) away from the quasi-

0o0010 geostrophic limit. In contrast with Taylor-Couette flow,
with its discrete spectrum of modes in the cross-flow
direction, here there is a continuous set of unstable

0.o_00 __.................. modes for any along-stream and vertical wavenumber
-1.0 -05 00 05 1.0 pair (and its corresponding cross-stream k). In Fig-

ures 5-6, growth rates are shown for optimal along-flow
and vertical wavenumbers, indicating yet again a rapid

Figure 4. As figure 3, but with logarithmic ordinate increase of the growth rate in the vicinity of the third
condition for loss of balance; the functional form of

0.06 a[Ro] here appears to be close to that for the higher-
mode, Taylor-Couette instabilities. Again, a resonance

0.05 1can be diagnosed with a shear-modified Kelvin mode
and an inertia-gravity mode.

0.04
In summary, the three different barotropic, anticy-

"0 03 clonic, rotating, stratified, shear flows analyzed in this
and the preceding section all have an unbalanced insta-

0.02 bility whose strength rapidly increases in the vicinity
of the third condition for loss of balance (in addition

0.01 to the unbalanced, centrifugal instability in the vicin-
ity of the second condition). In the hydrostatic limit,

-1.0 -05 00 0.5 10 this instability is related to ageostrophic, parallel, anti-
(A- 5s)/f cyclonic flow instability in a shallow-water layer (Sato-

mura [1981]; Griffiths et al. [1982], et seq.)

Figure 5. Growth rate, a/f, for the parallel boundary Baroclinic and Kelvin-Helmholtz Instabilities
current (9), maximized over along-stream and vertical

wavenumbers. The abscissa value is based upon the Consider a steady, spatially uniform vertical shear
minimum over x which occurs at x = 0. flow, U(z) oc z, in a uniformly stratified and rotating

fluid in a vertically bounded domain with non-isopycnal
.Iboundaries. We define the Richardson number for this

0flow by Ri = N2/U2, which is equivalent to a Fr- 2 .

The balancing buoyancy field is B(y, z) = N2z-fUzy,
and the associated quantities in the second and third

0.0100 7 conditions for loss of balance are

0.0010 \ f[1I+1,
Notice that this flow regime is anticyclonic since A/f <
1. Thus, we can make the following categorization for

0o000 _ this flow in terms of Ri and in relation to the conditions
-1.o -0.5 0.0 05 1.0 for loss of balance:

(A- ISI)/f

* The quasigeostrophic limit occurs for Ri -+ oc. It
Figure 6. As figure 5, but with logarithmic ordinate has a geostrophic baroclinic instability (Charney
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[1947]; Eady [1949]), whose "inflection point" in of barotropic and baroclinic instabilities. The insta-
this particular case occurs at the vertical bound- bility onset is generally understood to be sharp with
aries (see above), respect to the N 2 and A conditions for loss of bal-

"ance, which correspond to the gravitational and cen-
* The third condition is satisfied if Ri < 2. trifugal instabilities. We have shown for the elliptical,

"* The second condition is satisfied if Ri < 1. Taylor-Couette, and barotropic boundary-current insta-
bilities that the onset behaviors are smooth in the tran-

"* The classical (non-rotating) condition for the on- sition across the A - ISI condition, though still quite
set of Kelvin-Helmholtz instability (Miles [1961]; steep, with exponential or steeper dependences for the
Howard [1961]) is satisfied if Ri < ¼. growth rate, a(A - ISI). The onset behavior near the

" The first condition is satisfied if Ri < 0; this is A -- ISI condition has yet to be as well determined in the

gravitational instability (see above). ageostrophic baroclinic instability problem, but previ-
ous studies indicate it is also steep. Kelvin-Helmholtz

Analyses of this problem in Stone, [1966,1970] and instability does not fit in this categorization scheme be-
Nakamura [1988] show that a centrifugal instability does cause its onset occurs well beyond the A and A - ISI
occur near Ri = 1 for both zonally symmetric and conditions.
asymmetric fluctuations and that another ageostrophic Thus, we conclude that these problems give confir-
instability (with shorter zonal wavelengths than the mation, pro tem, of the hypothesis that the limits of
geostrophic instability) occurs for even larger values of balance are indicative of transition from the larger-scale
Ri, though its onset value is not well determined. This regime of inverse energy cascades in anisotropic flows to
latter instability is shown in Figure 2 of Stone [1970], the smaller-scale regimes of forward energy cascade to
with an accompanying remark that it has "growth rates dissipation of more nearly isotropic flows and intermit-
limu] which decrease as Ri increases, and may in fact tently breaking inertia-gravity waves. There is still need
still be unstable for Ri > 2, but if so the growth rates for refining our understanding of a (Ri, Ro, Fr) in the
were too small to to be found by our numerical method, neighborhood of the conditions for loss of balance, espe-
because of the near singular behavior of the coefficients cially for the less familiar third condition. Now that we
of the differential equation when Ima is very small." know that pure barotropic and barocinic instabilities fit
Confirmation is presented in Figure 8 of Nakamura the hypothesis, it would be worthwhile to further test
[1988] which shows that Imo is strongly decreasing as it with more general shear profiles (e.g., the "coastal"
Ri increases; it is somewhat unclear exactly how large V(x, z) profile that Barth [1994] has shown to have an
a Ri value he obtained unstable solutions for, but his ageostrophic baroclinic instability). Beyond these lin-
figure suggests it is at least as large as Ri = 2. An ear instability problems lies the challenge of aptly diag-
interpretation of the shortwave instability is presented nosing flow evolution near the loss of balance conditions
(p. 3261): it involves a resonance between a boundary- in general nonlinear initial- and boundary-value prob-
trapped shear mode and an inertia-gravity mode, with lems. Nevertheless, we interpret the results in hand as
an "inertia critical level" that limits the vertical extent indicating that the loss-of-balance transitions are steep
of the eigenmode. Thus, although further examination but fuzzy, consistent with the view that the balanced
is needed of the behavior of Ima in the vicinity of the slow manifold is itself modestly fuzzy and leaky to more
third condition for loss of balance, the instabilities for efficiently cascading, unbalanced motions.
this flow appear to support quite well the hypothesis we
have advanced. Acknowledgments. The authors appreciate support
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