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Abstract: Compelling economic, competitive, and technological factors are changing
the way many companies view machinery maintenance, repair, and overhaul (MRO)
activities. This shift toward a new Maintenance Management Paradigm has implications
in many areas of the business including manufacturing scheduling, control, finance,
inventory, quality, and asset management. Implementation of the new Maintenance
Management Paradigm will require three fundamental building blocks. First, is a
framework that enables the efficient re-use of best-in-class diagnostic and prognostic
software, hardware, and sensor modules. An open-system architecture will be
fundamental to meeting this objective. Second, is the ability to rapidly deploy needed
hardware and software elements in a reliable and cost-effective manner across distributed
system components. Wireless, intelligent sensor nodes will play an important role in the
deployment of future systems. And third, is the infrastructure and that will permit system
level integration of an ensemble of distributed intelligent system elements to develop
actionable diagnostic and prognostic information. Higher-level diagnostic and prognostic
information will drive critical decision making to insure maximum system reliability,
lowest operating cost, maximum revenue generation or mission success for example.
This paper provides specific examples of elements in the areas of Framework, Distributed
Intelligent Modules, and Infrastructure for system-level integration.

Key Words: Agent; diagnostics; distributed intelligence; failure prediction; intelligent
sensors; maintenance management paradigm; open systems architecture for condition
based maintenance (OSA/CBM); prognostics

1. Introduction: Machinery health assessment is becoming critically important across a
broad spectrum of shipboard, industrial, and commercial applications. The operational
demands and high procurement costs of today's systems in these applications requires a
high degree of uptime and high reliability. Unexpected failures are costly to correct at
best, at worst; such failures will be catastrophic.

At a recent workshop on Intelligent Devices various industry representatives consistently
said that their top priorities were 1. machinery prognostics and 2. overall process or
system-level health [1]. Similar priorities also emerged following a two-day NIST
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workshop on Condition-Based Maintenance on November 17-18, 1998. The barriers or
technology requirements identified at this workshop were 1. continuous monitoring, 2.
accurate prediction of remaining useful life, and 3. generate adaptable and actionable
recommendations.

The benefits available through effective diagnostic/prognostic system are now becoming
a business necessity lbr many organizations. Labor, material, and energy costs have
already been minimized for many plant operations. Maintenance expenses and the
operational impact of unexpected failures represent the largest remaining controllable
expenditure. In some cases, maintenance expenses may exceed the profit from a plant.
For other organizations, industry-leading machinery reliability and maximum uptime are
absolutely essential to suceed at various contemporary business strategies such as JIT,
TQM, supply-chain management, and OEM service outsourcing among others.

New developments in algorithms, industry standards, communications, and software
architectures promise to accelerate the deployment effective diagnostic and prognostic
systems. These developments will enable new technologies to be readily integrated with
existing systems for near-term, observable business impact.

II. Background: The diagnostic and prognostic needs expressed by a broad range of
organizations may be met in a cost-effective manner and with minimal risk by leveraging
specific developments occurring in three critical areas. First is a framework that provides
the ability to efficiently integrate re-usable algorithms. Second are developments in
communications and in particular wireless technologies. Third is the development of an
infiastructure for the system-level integration of distributed intelligent system elements.
System-level integration provides the toundation for robust systems which are capable of
generating actionable diagnostics and prognostic plans., hardware platforms, sensor
modules, database intbrmation, and intelligent devices in an automation system.

The integration of these three factors together with advanced prognostic algorithms will
form the cornerstone of a new Machinery Maintenance Paradigm. This paradigm
employs targeted, task-specific sensors and algorithms integrated in a framework that is
readily expanded and adapted to changing operational needs. Open, industry-standard
systems and interfaces are fundamental to this framework. Such systems will then be
readily integrated throughout the plant equipment and coupled with various IT,
operational planning, finance, and control systems.

I11. Framework: Various components and functional capabilities of diagnostic and
prognostic systems may be organized as a framework of system components or building
blocks. Such a framework provides a scheme for identifying and organizing essential
information about a system and also provides an structure for defining standard interfaces
between system elements and functional requirements for important system elements.
The requirements for capturing machinery health information, interpreting the data, and
acting on the results of the analysis may be arranged in a hierarchy (Table I). This
hierarchy ranges from simply capturing data from a particular process or machine to
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interpreting sampled data to detecting a I ... .. . . .. . .
fault has occurred or what fault or faults Table I
will occur. Higher levels of the hierarchy HIERARCHY OF
provide a range of capabilities for INTELLIGENT MACHINES
automatically reacting to novel faults or 1. Data Acquisition
reacting in advance of an anticipated 2. Monitor
failure. Higher levels of this hierarchy 3. Detect
beginning with diagnosis and prognosis 4. Diagnose
will typically require the integration of 5. Prognosis
multiple data sources as well a knowledge 6. Prognostics & Control
of the process equipment and operating 7. System-Level Prognosis & Control
state or context. 1 8. Dynamic optimization / multi-objective

control
There is clearly a move to intelligent 1 9. Adaptive / Reconfigurable
devices and distributed intelligence. Order of increasing complexity / cost /
Intelligent components may occur at the economic benefit
structural level (e.g. smart materials), at -

the sensor level, or at the device level (e.g. embedded intelligence). One effort to
establish a standard transducer (sensor / actuator) interface is the IEEE 1451 standards
effort. This standard seeks to move data acquisition, distributed sensing, and control to
more of an open system by establishing a framework and data elements for "smart"
tranducers. Included in this standard is a specification to facilitate sensor identification,
calibration, documentation, sensor replacement, and network integration among other
features [2]. Research in self-validating sensors (SEVA) at the University of Oxford over
the last 12 years have been directed at defining intelligent sensors which dynamically
sense their own condition and provide information regarding the quality or validity of the
sensor value returned [3]. This is an important, emerging area currently being proposed
at a draft standard by BSI for Data Quality Metrics [4]. Information on data quality
becomes critically important as we move to higher levels of the hierarchy of intelligent
machines shown above toward automatic control, decision-making, and autonomous
machines.

Data critical to establishing the health of equipment may be captured and stored in an
application-specific manner to accommodate essential memory or timing constraints.
Preferably, machinery data should be organized in an open, industry standard format such
as defined by MIMOSA (Manufacturers Information Management Open Systems
Alliance). The data format and definitions established by MIMOSA are the result of
many years work by an international team of MIMOSA sponsors and members. This
standard is open and accessible to the public [5].

More recently, a group of industry and academic partners have teamed together to
develop an Open Systems Architecture for Condition Based Maintenance (OSA/CBM).
This program is part of the Dual Use Science & Technology program (DU&ST) program
with joint industry-government funding (BAA 98-023). This effort, leveraging off the
work of MIMOSA. has resulted in an operational framework for machinery diagnostics
in an open-system, layered framework as shown in Fig. 1 [6].
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This open system architecture implements a middleware interface to support a broad
range of operational models including COM/DCOM, CORBA, and XML/HTTP client-
server architecture. This model was demonstrated on a laboratory pumping system in
December 2000 and will be demonstrated on aircraft, off-road vehicle, and shipboard
applications during the next year.
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Figure I
Open Systems Architecture for Condition-Based Maintenance (OSA/CBM)

The integration of intelligent sensors and self'validating sensors in an open. operational
framework as specified by MIMOSA - OSA/CBM promotes the development and
deployment of distributed intelligent sensors across a broad range of applications.

IV. Distributed Intelligent Sensors

We continue to see a rapid pace of development in intelligent sensors and open systems.
These developments are leveraging off developments in software architectures, sensor
technologies, and networks which are moving toward open, public standards. The wide-
scale deployment of intelligent devices in manufacturing and commercial operations
remains limited due to the high cost of installation and the cost and complexity associated
the processing and analysis of the massive amount of real-time data received from the
hundreds or thousands of sensors. Typically only data is received from remote sensors,
as opposed to information (e.g. actionable information or health information).
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Developments are occurring in wired networks and wireless networks that promise to
reduce or virtually eliminate the wiring costs for distributed sensors. Bit-oriented
networks such as DeviceNet are effective for local-scale integration of plant sensors. For
higher bandwidth and extended networking TCP/IP becomes more attractive particularly
when the higher cost of network access and transport may be justified by many remote
intelligent nodes.

Wiring costs are often significant a cost component in the installation of many
manufacturing and commercial systems. These costs may be eliminated with the use of
wireless communications technology although at the expense of needed radio links. A
variety of radio links exist and are selected based on needs for various bandwidth,
reliability, distance, interoperability, and network architecture. Various government
funded programs from the Department of Energy, Department of Commerce and DARPA
seek to support the development of wireless technology for smart devices [7].

Recently there has been significant interest in low-cost wireless networks. Much of this
interest is driven by the significant commercial potential for wireless consumer products.
The development of the Bluetooth communications standard driven by the huge
commercial potential may provide very low cost, 2.4 Ghz wireless data links for local
sensor networks and data acquisition [8].

Wireless sensor networks promise to enable numerous applications for sensing and
control including machinery monitoring for intelligent maintenance management.
Rockwell Science Center has created a development environment for testing wireless
sensing applications [9]. The Wireless Integrated Networked Sensing (WINS) platform
includes
"* hi-directional RF communications hardware and sophisticated networking protocols,
"* processing and memory with a multi-tasking, real-time operating system for sensor

data acquisition, signal conditioning and algorithmic processing of the data, and
"* support for multiple sensor inputs including wide bandwidth accelerometers for

vibration monitoring.
The integration of these technologies allows the easy installation of remote access sensors
that can be configured in a variety of ways. The individual units, or nodes on the
network, receive sensor data from attached sensors, process the sensor data and send back
messages to the end-user, informing him/her about the condition of the equipment or
process that is being monitored. Implicit in this architecture is a degree of distributed
processing that can range from individual WINS nodes processing the data from their
sensors and interpreting that data, to higher level algorithms that perform system-wide
diagnostics using pre-processed sensor data from other WINS nodes [10].

The current WINS communications network operates in the 900 MHz RF band that is
regulated for unlicensed use in the United States for transmission powers under 1 watt
(spread spectrum) or 1 mwatt (single frequency). Because of the limited transmit power
required for operation at these frequencies, the range of each unit is nominally 100
meters. Added to this the possibility of other path losses from absorbers or reflectors
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between the WINS nodes and the end-user gateway node, and the possibility that these
may be dynamic. the need for a robust network system is apparent.

Rockwell Science Center has launched a commercial product, HiDRA (Highly
Deployable Remote Access), that is based on the WINS technology [Fig. 2]. Included in
this product is a network protocol that supports broadcast and uni-cast, multi-hop
communication links. The multi-hop protocols allow routing of messages from nodes
that are out of the RF communications range of the end-user gateway node through
intermediate nodes that are within RF range of each other. The system is self-
configurable, so that the user does not have to spend time setting up the network, it is
done automatically at startup. It is also dynamic. so that if conditions change in the RF
environment of the I IiDRA node, the routing table for relaying a message through several
nodes to arrive at the desired destination will also change.

The WINS system has been deployed for over a year
monitoring the bearing health in the HVAC facility that
serves the two plants at Rockwell Science Center in
Thousand Oaks. The 10 WINS nodes are mounted on
50-75 hp motors, housed in the cooling fluid pump
room, that drive pumps supplying the cooling fluids for
the buildings at Rockwell Science Center.
Accelerometers are mounted to the motor casing over
the bearing locations of the motors and measure the
vibration at these locations. A temperature sensor
monitors the temperature of the motor case close to the
position of the accelerometer. Each WINS node does a
spectral analysis of the vibration signals that it receives

Figure 2 and computes bearing health status indicators that it
Rockwell Science Center transmits through RF link to a base-station WINS node

Hidra node connected to an internet server.

V. Infrastructure for Intelligent Systems

Distributed intelligent sensor nodes capable of processing data from multiple sensors
provide unique opportunities for data fusion and for cooperative processing, Our
objective is to put as much information into each node and leverage the capabilities for
processing complex algorithms in parallel and in collaboration with other sensor nodes.
This permits establishing accurate, dynamic, and robust models for diagnostics and
prognostics. The following outlines recent developments in model-based and non-linear
analysis methods. These new diagnostic / prognostic and modeling tools are considered
foundational and provides a basis for future self-organizing sensor networks and
dynamically reconfigurable systems.
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There are a variety of approaches for the development of fault detection, diagnosis and
prognosis algorithms with each having unique advantages and limitations when
implemented as distributed processing nodes.

Model-based approaches combine physical modeling of the system with experimental
data to determine a mathematical relationship between the occurrence of a fault and the
characteristics of a measured quantity in the system. Extended model-based techniques
may employ a family of models that relate each of the individual faults and their severity.
The residuals from each of the model-based observers are combined and then integrated
with other information available from casual modeling, signal processing, expert systems,
etc. to arrive at a decision regarding the current operating status of the system. A
diagram of the fault detection and diagnosis system implemented for rotating machinery
is shown in Figure 3. The core of this technology is an array of nonlinear filter/model-
based observer blocks that combine the output from a suite of observers. For details of
this structure and operation refer to [11] [12].

An important aspect of the system shown in Figure 3 is the ability to integrate
information from a variety of different sources such as multiple sensor nodes, into a
comprehensive fault detection and diagnosis decision. We have also implemented novel
algorithms for the detection and diagnosis of faults in rolling element bearing. These
algorithms are particularly well-suited for implementation on distributed sensor nodes.
Bearing fault detection has been demonstrated using model-based techniques with a fault-
detection filter. The ability to isolate the specific fault (e.g. ball, inner and outer race
defects) a time-frequency analysis method was developed. This was demonstrated using
experimental data collected firom an induction motor system, refer to [13]. Also, for a
novel approach that integrates sliding mode observers and fault detection filters for the
detection and isolation of faults in rolling element bearings, refer to [ 12].

A new method has been developed for the detection and diagnosis of defects in ball
bearings using the wavelet transform [14]. The signature produced by damage on the
DB2 wavelet is used for the wavelet decomposition of the preprocessed vibration signals.
A set of feature vectors are then defined based on the wavelet decompositions.

Finally, we present a method for the detection and diagnosis of mechanical faults in
rolling element bearings using vibration data and knowledge of the bearing defect
frequencies. For a particular bearing geometry, inner raceway, outer raceway and rolling
element faults generate vibration spectra with unique frequency components. The
bearing defect frequencies are linear functions of the rotating speed of the shaft. Outer
race and inner race frequencies are also linear functions of the number of balls in the
bearing. The operating speed changes with load and is often unknown and/or
unmeasurable. In addition, even if the type of bearing in the machine is known, the
number of balls in the bearing may be unknown. Thus, estimating the running speed and
the number of balls in the bearing are required for failure detection and diagnosis
methods that rely on knowledge of the defect frequencies of the bearing. We have
developed and implemented separate algorithms for estimating the rotational speed and
the number of balls in a bearing from vibration data.
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consisted of Figure 3
vibration Fault Detection and Diagnosis System for Rotating Machinery
signalsI
gathered from
a transducer mounted on the drive-end bearing of an induction motor. The induction
motor was operated under four different load conditions (four different running speeds),
and three different types of single point defects (inner race, outer race and ball) were
introduced into the drive-end bearing. The test results proved the algorithms to be very
reliable and when integrated with an envelope detection algorithm reliable fault detection
and diagnosis were obtained. Refer to [15] for more details. These core capabilities are
well suited to be implements in a distributed agent-based architecture.

Agent technology expands the notion of distributed computing which may partition a
problem to distribute the computation load to one in which the solution method is both
localized (autonomous) and also collaborative and adaptive (cooperative/goal oriented).
Within the collection of software agents each will have a local goal or agenda. In this
sense, each module is autonomous. In addition, there is an overarching goal or system
objective that each individual module must accommodate and through the collective
efforts of the multiple agents. The collection of such agents is termed a Holonic System.
This is a concatenation of the term Holos, meaning total or whole, and on, as in a neutron
or elemental body [16][17].
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The multi-agent approach provides an extremely powerful framework for integrating
partial solutions into more complex and more sophisticated diagnostic, decision making
and control structures 118][19J. This concept is particularly beneficial to machinery
diagnostics and prognostics. For example, remote intelligent sensor nodes may
efficiently monitor critical system components such as bearings. In the event an
excessive vibration level or temperature level is observed, information regarding the
degraded operation and reduced component lifetime may be relayed back to a central
information system. In addition, specific data on abnormal operation may also be
exchanged with neighboring smart sensor nodes. This will permit the nodes to
collaborate and each to exchange data and analysis to jointly establish a more accurate,
complete hypothesis of the root cause of the fault, such as a bent shaft. This will also
permit maintaining a more robust and accurate system model essential for accurately
predicting the future operating state of the machinery and estimated time until failure.
Wireless technologies will permit the widescale deployment of smart sensor nodes across
many system components. This will lead to more accurate system models and prognostic
estimates at a much lower cost. It will also enable very flexible and easily reconfigured
monitoring and diagnostic system.

The availability of complete and accurate process information and superior failure
prediction accuracy directly addresses the key concerns expressed by a broad range of
major manufacturers to know 1) overall process health and 2) accurate prognostic
information. The integration of this new, accurate information into existing control,
information systems, plant monitoring, scheduling, and maintenance system will provide
unprecedented levels of plant performance and economic value from installed equipment.

V. SUMMARY

The developments described above provide new and important capabilities for reusable
software and hardware modules. International efforts toward standards and open system
specifications will provide new opportunities for intelligent sensors and distributed smart
adaptable sensor nodes. In this infrastructure, model-based and observer-techniques
implemented on smart sensor nodes may be readily integrated into a broad range of
critical manufacturing processes. We anticipate future low-cost wireless solutions to
further propel the deployment of distributed sensor nodes. With an infrastructure to
effectively integrate the massive, parallel, distributed computing power there will be a
new era of monitoring and managing even the most complex systems. These new, more
powerful tools will form the cornerstone of the new Maintenance Management Paradigm.
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