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Abstract: In recent years, numerous anomaly detection and diagnostic technologies have been
developed for various military and industrial applications to aid in the detection and classification
of developing faults. In many cases, significant reductions in machinery total ownership costs
have been achieved through the judicious application of these technologies. However, there is
currently no consistent methodology available for assessing both the technical and economic
benefits of these machinery diagnostic technologies. In response to this need, a virtual test bench
is under development by the Navy for assessing the performance and effectiveness of machinery
diagnostic systems. The test bench utilizes a 'plug 'n play' interface that can readily accept
standardized diagnostic/prognostic tools and link them to real and model-based transitional data
from appropriate condition based maintenance (CBM) platforms. The assessment process relies
on a standard set of mathematical ground rules and a statistical framework to directly identify
confidence bounds, robustness measures, and various diagnostic thresholds associated with
specific mechanical diagnostic technologies. Specific performance and accuracy of the diagnostic
algorithms at the component or subsystem level are evaluated with performance metrics, while
system level capabilities in terms of achieving the overall operational goals of the diagnostic
system will be evaluated with effectiveness measures. This qualification and validation
methodology is utilized to compare a variety of diagnostic tools that are commonly used to
analyze gearbox vibration.
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Introduction: The US Navy's operational goals include improving mission readiness, and crew
safety while reducing the support requirements and costs associated naval platforms. To
accomplish these objectives the Navy is adopting condition based maintenance (CBM) practices.
CBM is based on the principle of monitoring the condition of machinery and repairing it just prior
to failure or an unacceptable level of performance degradation. Mission readiness can be
enhanced by CBM through the elimination of unnecessary preventive maintenance and by
identifying impending failures so that corrective action can taken in an efficient manner. CBM
procedures can also protect crewmembers by identifying impending machinery malfunctions with
sufficient warning to avert a catastrophic failure. By avoiding unnecessary preventive
maintenance and allowing a scheduled response to impending failures, CBM can reduce the
support requirements and total ownership cost associated with many types of machinery.

The success of a CBM program in a given application depends to a great extent upon the
availability of useful diagnostic and prognostic information. CBM practices are most beneficial
when maintenance actions can be planned well in advance, and corrective measures are carried
out just prior to failure. Such precise maintenance scheduling can only occur through the use of
timely and accurate diagnostic, or better yet, prognostic information. However, a consistent
methodology for evaluating the technical and economic benefits of mechanical machinery
diagnostic technologies does not currently exist. In response to this need, a virtual test bench is
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under development by the Navy for assessing the performance and effectiveness of machinery
diagnostic systems.

Performance Metrics Development
The performance of specific detection and diagnostic algorithms or subsystems of a CBM system
are measured with Performance Metrics'. The functionality of these diagnostic algorithms or
subsystems directly contributes to the overall effectiveness of the entire system. However, the
ability to assess the accuracy and robustness of particular algorithms is often more
straightforward when the technologies making up the system are checked separately. Also, from a
design and development point of view, it is often more logical to work on the improvements to
specific algorithms or processes at the elemental level rather than the overall systems level.
Metrics of performance for diagnostic/prognostic algorithms or subsystems are arranged into
three categories (detection, isolation, and prognosis) as shown in Figure 1. Detection metrics
measure the ability of diagnostic tools to correctly classify machinery operation as either normal
or anomalous. Isolation metrics measure the ability of diagnostic tools to accurately identify the
root cause and corrective action for a fault. Prognosis metrics measure the ability of prognostic
systems to accurately forecast the future condition of a mechanical system. Scores from the
individual performance metrics are combined according the hierarchy to produce summary scores
for each category, and for overall performance.

Thresholds
Overall Confidence

Detection False Positive
Sensitivity to load, speed, or noise
Stability

SRepeatability

Threshold
False Positive
Discrimination

Performance Isolation severity
Sensitivity to load, speed, or noise
stability
Repeatability

Predicted condition
Prognosis Remaining Life

Figure 1 Performance Metrics

The ability of diagnostic/prognostic systems to detect and isolate faults or to predict failures is
measured as a function of the fault severity. Figure 2 shows the confidence level reported by a
hypothetical diagnostic tool and the corresponding fault severity level as functions of time. This
could be the confidence that an anomaly exists or the confidence in a particular diagnosis.
Varying operating conditions or noise could cause fluctuations in the diagnostic confidence level.
The success function of the diagnostic tool is defined as the relationship between the average
confidence and the average severity level. Note that this relationship may be used to assess either
Boolean (0 or 1) confidence levels or continuous confidence levels within the same interval. The
success function for the hypothetical diagnostic tool is plotted in Figure 3.

Fault severity must be established by objective and irrefutable measures to ensure that the
assessments based upon it are accurate and impartial. This measure of severity will hereafter be
referred to as the ground truth severity level. The ground truth severity of a system's condition
may be assessed in a laboratory setting through the use of appropriate instruments or frequent
inspections by nondestructive evaluation (NDE) techniques. Measurements of the fault severity
are mapped onto the ground truth severity scale where zero represents a healthy operating
condition, one represents an unacceptable level of performance degradation. Once the ground
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truth is established, the anomaly detection threshold, isolation threshold, fault severity, stability,
repeatability, and duty sensitivity metrics may be determined.

.. ........ ........

Diagnostic
Confale .: o .............

00 Ground
Truth

Figure 2 Diagnostic and Ground Truth Figure 3 Success Function
Information

Detection metrics
The ability of a diagnostic algorithm or overall system to detect anomalous machinery operating
behavior is the most fundamental requirement for machinery health monitoring tool. For a
diagnostic system to be useful it must detect anomalies associated with incipient faults so that
corrective action may be taken in an efficient and timely manner. The Detection Threshold Metric
measures a diagnostic algorithm or system's ability to identify anomalous operation associated
with incipient faults with a specified confidence level. This metric is defined as the minimum
ground truth severity corresponding to a designated confidence level on the detection success
function as shown in Figure 3. Confidence levels of 67% and 95% corresponding to one and two
standard deviations are used to calculate the detection threshold metric. Eq. ( 1 ) is used to
calculate the detection threshold metric score.

Detection Threshold = 1 - S(c) (1)

where: S(c) = ground truth severity at a confidence of c

An assessment of the detection confidence level over the entire severity range for 0 to 1 is
achieved with the Overall Detection Confidence metric defined in Eq ( 2 ). Graphically, the
overall confidence score represents the area under the success function. An algorithm that detects
an incipient fault with high confidence will receive a high Overall Confidence score, while an
algorithm that does not report a fault until it becomes very severe would receive a low score.

OverallConfidence f C(s)ds (2)
0

where: C(s) = The success function
s = severity

A confidence level that fluctuates wildly is difficult to interpret and therefore undesirable. For
example, a diagnostic tool that produces a Boolean result of either no fault or fault may flicker as
the fault severity approaches the detection level. The StabilitE Metric measures the range of
confidence values that occur over the fault transition by integrating the peak to peak difference at
each point on the success function as stated in Eq.( 3).
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Stability = 1 -f (C (s) -CL (s)) ds (3)
0

where: CH(s) = maximum value of the success function at severity s
CL(S) minimum value of the success function at severity s
s = severity

Ideally, diagnostic systems should detect anomalies over the full range of operating (duty)
conditions such as loads, speeds, etc. The Detection Duty Sensitivity Metric measures the
difference between the success functions of a diagnostic tool under two duty conditions as stated
in Eq.( 4 ).

DutySensitivity = I - J(CI (s) - C2 (s))2 ds (4)
0

where: C1(s) = success function at duty condition I
CA(S) = success function at duty condition 2
s = severity

A diagnostic tool that incorrectly reports anomalies is unacceptable because it reduces availability
and increases maintenance costs for the equipment. The False Positive Confidence Metric
measures the frequency and upper confidence limit associated with false anomaly detection by a
diagnostic tool. Calculation of the false confidence metric is based on the false positive function
that is stated in Eq.( 5 ) and an example is shown in Figure 4.

F(c) = n(c)/ N (5)

where: n(c) = number of false positive detection events with confidence > c
N = number of opportunities to detect a normal operating condition

Integration of the false positive function with respect to the confidence yields two parameters for
assessing false anomaly detection by a diagnostic tool. The first parameter, a, represents the
frequency of false positive anomaly detections and can be visualized as the area under the false
positive function. The second parameter, 13, is the confidence corresponding to 95% of a as
shown in Figure 5. The mean value of the two parameters, a and 3, helps determine the false
confidence metric as shown in Eq.( 6).
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Figure 4 False positive function Figure 5 Integrated false positive function
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FalseConfidence = 1 + a+ (6)
2

In an operational environment sensor data is sometimes contaminated with noise that may
interfere with the operation of diagnostic algorithms. The robustness of an algorithm to noisy data
is measured by the Noise Sensitivity Metric. Two aspects of the diagnostic system's response,
change in the success function and increase in the false positive score are combined to form the
noise sensitivity metric. The difference between the success functions of a diagnostic tool when
the sensor data is contaminated with two different levels of noise. Eq. ( 7).

NoiseSensitivity =(1 -1 (CI (s) - C2 (s))2 ds j* (AFalsePositive) (7)

where: C1(s) = success function under noise condition 1
C2(s) = success function under noise condition 2
s = severity

Calibration of the performance metrics determine the weight that each individual metric carries in
the category and overall composite scores. These weighting factors should reflect the specific
requirements of the intended application, and therefore must be determined on a case by case
basis. For example, when evaluating a gearbox diagnostic tool, knowledge of the gearbox's
criticality (such as the main drive on helicopter vs. a redundant shipboard system) would
determine the relative weight assigned to the detection threshold metric and the false confidence
metric. The process of selecting weighting factors may be simplified by allowing the user to
select a standard weighting scheme from a previously defined set or create a custom weighting
scheme from scratch. A weighted average is used to calibrate and combine the individual
performance metrics at the category level, and the category scores into an overall performance
score as shown in Eq.( 8 ).

CompositeScore= WlM 1 + w 2M 2 + w 3 M 3 +"+ wM(8)Yw, (g)

where: Mi = metric scores
wi = weight assigned to metric i

Effectiveness Metrics
The overall effectiveness of a diagnostic system in terms of achieving the desired CBM goal is
measured with Effectiveness Metrics'. This could include the integration of all the monitoring and
diagnostic systems on the entire platform or a single diagnostic system made up of several
different diagnostic algorithms. In either case, the effectiveness metrics utilize many of the same
metrics as defined for the performance metrics. However, the resulting scores of the metric may
be calibrated and combined differently based on the scope of their application. Some metrics such
as cost, speed, complexity, robustness, and resource requirements are unique to the overall
effectiveness of the diagnostic system and are therefore only defined as effectiveness metrics.
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Figure 6 Effectiveness Metrics

Acquisition and implementation costs of the diagnostic system may have a significant effect on
the system's cost effectiveness. The Implementation Cost Metric simply measures the cost of
acquiring and implementing a diagnostic system on a single application. If the diagnostic system
is applied to several pieces of equipment, any shared costs are divided among them. Operation
and maintenance costs may also play a significant role in determining whether a diagnostic
system is cost effective. The O&M Cost Metric measures the annual cost incurred to keep the
diagnostic system running. These costs may include manual data collection, inspections,
laboratory testing, data archival, relicensing fees and repairs.

The ability of the diagnostic algorithms or system to be run within specified time requirements
and on traditional computer platforms with common operating systems is important when
considering implementation on multiple machinery platforms. Therefore, a metric that takes into
account computational effort as well as static and dynamic memory allocation requirements is
necessary. The Computer Resource Metric computes a score based on the normalized addition of
CPU time to run (in terms of floating point operations), static and dynamic memory requirements
for RAM and static source code space, and static and dynamic hard disk storage requirements.
Computer requirements may be a significant issue in some applications such as aircraft.

Complex systems are generally more susceptible to unexpected behavior due to unforeseen
events. The System Complexity Metric measures the complexity of diagnostic systems in terms of
the number of source lines of code (SLOCs) and the number of inputs required.

The individual effectiveness metric scores are combined to form an overall effectiveness score by
means of a cost function. The benefits achieve through anomaly detection, fault isolation, and
failure prediction are weighed against the costs associated with false alarms, inaccurate
diagnoses, licensing, and resource requirements of implementing and operating a diagnostic tool.
The simplified cost function in Eq. ( 9 ) states the Technical Value provided by a diagnostic
system for a given fault. The value of a diagnostic tool in a particular application is the
summation of the benefits it provides over all the failure modes that it can diagnose less the
implementation cost, operation and maintenance cost, and consequential cost of incorrect
assessments as stated in Eq.( 10 ).

Value = Pf *(D*oa+ I*P[)-(I- Pf)* (Pn *O-P, *0) (9)

where:
Pf= Probability (time-based) of occurrence for a failure mode
D = Overall Detection Confidence metric score
a = Savings realized by detecting a fault prior to failure
I Overall isolation confidence metric score
1= Savings realized through automated isolation of a fault
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PD = False positive detection metric score
* = Cost associated with a false positive detection
PI = False positive isolation metric score
0 = Cost associated with a false positive isolation

TotalValue = YTechnicalValuei - A-0-(1- P0 )* 6 (10)

where:
A = Acquisition and Implementation Cost
O = Life Cycle Operation and Maintenance Cost
P. = Computer Resource Requirement score
8 = Cost of a standard computer system

CBM Metrics Database
One of the most significant aspects associated with the development and implementation of
diagnostic system metrics is having well-documented fault data sets. Initial fault/failure data sets
were obtained primarily from previously acquired test bed (including accelerated loading and run
to failure tests) and simulation data sets with actual in-service data being applied later in the
program. The Penn State ARL Mechanical Diagnostics Test Bed (MDTB) was utilized in this
program as the basis for the diagnostic system metrics evaluation, testing and verification. The
MDTB represents a wealth of well-documented data sets and information on gear, shaft and
bearing faults and failures critical to Naval aircraft carrier day-to-day operations. The database of
fault scenarios already developed under existing Multi-disciplinary University Research Initiative
(MURI) provided an excellent basis and source of data from which the fault data sets utilized in
this program were built upon. Identified metrics that require additional or more specific seeded
fault or failure test data sets can be acquired from this test bed configuration or Penn State ARL's
other test beds (Bearing Test Rig, Diesel Enhanced MDTB) throughout and after the duration of
this program.

The metrics evaluation process is currently being implemented within the framework of a Test
Bench that will utilize this database of sensor data from carefully constructed tests of selected
CBM platforms as a basis for evaluating diagnostic/prognostic systems. Each test documents the
transition of a mechanical system from a normal operating condition to failure or significantly
degraded performance. Use of transitional data is necessary for the assessment of
diagnostic/prognostic tools that rely on trending, and for evaluating the response of
diagnostic/prognostic algorithms as a function of fault severity. Potential future sources for data
of this type include the manufacturer of the equipment, Naval laboratories, and independent
testing facilities. Contributions to the database should be screened to ensure data integrity and
that the data remains unbiased toward any particular diagnostic/prognostic approach. The review
process should include Naval engineers who will use the Test Bench to evaluate
diagnostic/prognostic tools, and Naval maintenance officers who possess an intimate knowledge
of the machinery reliability issues in the fleet.

Specifics of the MTBD Test Bed at ARL
The MDTB at Penn State was built as an experimental research station for the study of fault
evolution in mechanical gearbox and power transmission components. It consists of a motor,
gearbox, shafts, bearings, and a generator on a rigid steel platform. Gearboxes, shafts and
bearings are instrumented with 52 sensors including accelerometers, thermocouples, acoustic
emission sensors, and oil debris sensors. Tests are run at various load and speed profiles while
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logging measurement signals for later analysis. Duty cycle profiles can be prescribed for any
speed and load.

CBM Metrics Test Bench Web Application
Implementation of a standardized process and associated metrics for efficiently evaluating CBM
information systems could potentially enhance the quality of diagnostic/prognostic technologies
in two ways. First, doing so will allow the Navy and other users of diagnostic/prognostic tools to
select the most appropriate algorithms for their application and verify the advertised capabilities
of candidate systems. Second, developers of diagnostic systems may use the metric-based
evaluation process to assess and improve their algorithms. To encourage participation, developers
will have the option to evaluate their algorithms without creating any permanent record of the
results.

In order to provide easy access to the CBM metrics developed under this program, a WEB-based
prototype application called the CBM Metrics Test Bench has been developed to evaluate
diagnostic technologies. Users of the site will upload algorithms to the server for evaluation and
an e-mail will be issued to them indicating that their results are complete. The site will also
provide access to a limited set of the maintained databases. However, a comprehensive set of data
will only be accessible to Naval and other relevant DOD personnel for official use in qualification
and validation of diagnostic tools.

On the Log-in page shown in Figure 7, the user can access the "Motivation and Evaluation
Criterion", the "New User Registration", and the "User Log-In" links. Users who are not
registered to use the web-site, may do so by clicking the "New User Registration" link. After
successfully logging in, users may choose links that will allow them to obtain data, submit an
algorithm, or view the results of an evaluation. Some of the transitional machinery failure data
used in the evaluation will be available to facilitate the development of algorithms. Users will be
able to download sample data sets from the web-site, or request a full data set to be mailed to
them.

Mir

Figure 7 Log-in page Figure 8 Database and sensor selection

To submit an algorithm, users will begin by uploading it to the server by either typing in the path
and file name of the file containing their algorithm, or select it using "Browse". An algorithm
description field is provided to allow users to identify their algorithms. After entering a file name,
the algorithm will be assigned a Job ID that will be used to identify the algorithm within the Test
Bench. Users may also choose the platform, faults, and sensor data on which their algorithm is
evaluated. As the database grows, the user will be able to select a variety of failure modes for
each platform. Information about the conditions under which each data set was collected is
available through the links under the heading "Database Development and Specifications".
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The weighting factors that are used to combine and calibrate the metric scores are accessible to
the user on the metric weighting page shown in Figure 9. Users may view the definition of each
metric by clicking on its name. When the user is satisfied with their choices, they may choose to
perform the evaluation on either an official or a confidential basis. Algorithms that are evaluated
on an official basis will have their scores added (anonymously) to a publicly accessible database.

Evaluation results are accessible on two levels. The lower level shows the scores earned by an
algorithm while evaluating one particular fault on a platform. Users may view the definition of
each metric by clicking on its name. The higher level results page presents the combined results
for the algorithm against all of the selected faults. In the case of performance metrics, the scores
are averaged, and for the effectiveness metrics reflect the sum of the technical values achieved by
the algorithm for each fault type.

Figure 9 Metric weighting page Figure 10 Evaluation results page

Results
The CBM Metrics Test Bench was used to evaluate the performance of ten anomaly detection
algorithms for a gearbox. Gearbox failure data collected on the MDTB was used to evaluate the
ability of the selected algorithms to detect gear tooth failures. During the test, cyclic loads as high
as three times the rated load for the gearbox accelerated gear tooth failure rates. All of the
algorithms utilize the same time domain vibration data, but process it in different ways.

Table 1 shows selected scores for each of the algorithms. For all of the metrics, a low score
indicates an undesirable result, and high score indicates a desirable result. For example, a high
Computer resource requirement score is awarded to algorithms that use a small portion of the
computer's resources. Calculation of Detection Technical Value, Overall Performance, and
Overall Effectiveness are based on weighting factors described in Eqs ( 8), ( 9), and( 10). The
factors used to calculate these results are stated in Tables 2 and 3. Evaluations of three diagnostic
algorithms (RMS, Wavelet, and FM4) are described in detail.
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Table 1 Metric Scores

Dempster
Metric RMS Kurt Wavelet FMO NA4 M6A Shafer FM4

Detection lo Threshold 22 19 27 68 64 77 73 76
Detection 20 Threshold 0 0 12 52 19 64 64 64
Overall Confidence 51 39 44 75 64 84 79 82
False Positive Conf. 44 57 99 53 99 60 92 87
Stability 36 45 55 52 48 75 81 82
Duty Sensitivity 47 60 74 73 59 75 78 84
Noise Sensitivity 95 99 100 98 97 96 99 98
Implementation Cost $ 1500 1500 1500 2000 2000 2000 2500 2000
O&M Cost$ 700 700 700 1000 1000 1000 1000 1000
Computer 99 99 88 65 65 65 47 65
Complexity 99 99 97 79 79 79 78 79
Detection Tech. Value $ 3255 2551 4387 6010 6374 7076 7640 7798
Overall Performance 42 46 61 65 66 75 82 82
Overall Effectiveness $ 1052 333 1820 1021 1325 1879 1433 2448

Table 2 Performance Weighting Factors Table 3 Effectiveness Weighting Factors

Metric Weight Factor Weight
Detection la Threshold 10% Probability of Fault 20%
Detection 2; Threshold 10% Cost of False Alarm $4000
Overall Confidence 20% Benefit of Detection $50000
False Positive Conf. 20% Cost of Std. Computer $2000
Stability 20%
Duty Sensitivity 10%
Noise Sensitivity 10%

RMS is a simple and commonly used technique for detecting anomalous machinery operation.
The RMS based algorithm calculates the root mean square value of the time domain vibration
signal. The RMS level of a signal x consisting of N samples is calculated using Eq.( 11). Figure
11 shows the diagnostic confidence reported by the RMS algorithm as compared to the ground
truth severity level. The low performance scores assigned to RMS reflects the fact that RMS does
not respond well in the early stages of gear damage and that the RMS level increases significantly
with load. However, the low costs and low complexity (high complexity score) of the RMS
algorithm make its overall effectiveness comparable to more sophisticated algorithms.

RMS = .- " xi(11)

F1N
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Figure 11 Diagnostic confidence reported Figure 12 Diagnostic confidence reported
by the RMS algorithm by the Wavelet algorithm

The Wavelet algorithm uses a wavelet transform to analyze the nonstationary characteristics of
vibration signal. The continuous wavelet transform of a time functionf(t) is defined in Eq. (12)
where g(t) is a given "mother wavelet" wavelet. The Morlet wavelet was chosen for g(t) and is
defined mathematically by Eq. (13).

G(a, s) = lal -J fQ)g[(t - s)i a]dt (12)

g(t) = exp(-jwo t) exp(- t 2 /2) (13)

Where t is time and wo is the fimdamental (radian) frequency of the wavelet. Eq. ( 13 ) shows that
the (complex) Monlet wavelet can be interpreted as a "modulated Gaussian." The actual Morlet
wavelet chosen for the analysis is given by wo = 5 in Eq. ( 13 ) above. An adaptive IIR
thresholding/tracking filter for processing wavelet output (at 550 Hz.) was also introduced. This
kind of filter design is particularly robust against false alarms. The features resulting from the
CWT processing include the number of detection counts (threshold crossings), and the peak
amplitude and frequency obtained by a peak search of the CWT power spectral density near the
frequency of interest (usually one of the shaft frequencies).

Figure 12 shows the diagnostic confidence reported by the Wavelet algorithm as compared to the
ground truth severity level. Inspection of the Wavelet's diagnostic confidence will confirm that it
warrants the high False Positive Detection score that it received. Furthermore, Wavelet shows
very little load dependence as indicated by the Duty Sensitivity metric score.

The FM4 based algorithm uses the difference signal to detect changes in the vibration pattern
resulting from damage on a limited number of teeth". FM4 is calculated for a difference signal d
consisting of N samples according to Eq. (14). shows the diagnostic confidence reported by the
FM4 algorithm as compared to the ground truth severity level. After calculating FM4, an
empirical load correction was applied to reduce the load-induced fluctuations in the output. As a
result of the load correction, the Duty Sensitivity metric score is higher (indicating that the
confidence reported by the corrected algorithm is less dependent on the applied load. The same
load correction technique was also applied to the M6A and Dempster Shafer (fusion) algorithms,
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but not to the others. As expected, these load-corrected algorithms receive the highest duty
sensitivity scores.
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Figure 13 Diagnostic confidence reported by the FM4 algorithm

Conclusion:
The metric-based process developed during this program clearly demonstrates the feasibility and
potential benefits of a comprehensive system for evaluating the performance and effectiveness of
diagnostic/prognostic tools. The principal achievements include the development and verification of
diagnostic system metrics for evaluating and comparing the benefits advertised by system
developers, and the eventual demonstration of these metrics in the assessment of various diagnostic
tools. These achievements have been demonstrated through a comprehensive and easy-to-use
internet-based software tool. The next necessary steps must include demonstration of the metrics
software capabilities for various machinery diagnostic applications.
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