
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP013508
TITLE: Standards Developments for Condition-Based Maintenance
Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: New Frontiers in Integrated Diagnostics and Prognostics.
Proceedings of the 55th Meeting of the Society for Machinery Failure
Prevention Technology. Virginia Beach, Virginia, April 2 - 5, 2001

To order the complete compilation report, use: ADA412395

The component part is provided here to allow users access to individually authored sections
)f proceedings, annals, symposia, etc. However, the component should be considered within
[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013477 thru ADP013516

UNCLASSIFIED



STANDARDS DEVELOPMENTS FOR CONDITION-BASED
MAINTENANCE SYSTEMS

Michael Thurston and Mitchell Lebold
Applied Research Laboratory

Penn State University
P.O. Box 30

State College, PA 16804-0030

Abstract: An effort is underway to develop an Open System Architecture for Condition-
Based Maintenance. The architecture development has focused on the definition of a
distributed software architecture for CBM. The distributed software model was selected due
to the recent emergence of enabling software technologies and the benefits of the approach. In
particular, the availability of network connectivity provides a ready hardware backbone over
which the software system may be distributed. The requirements for a general CBM
architecture are defined, and the framework of the distributed architecture is provided.

Keywords: Condition-based Maintenance; Condition Monitor; Health Assessment;
MIMOSA; Open System Architecture; Prognostics

Introduction: Condition Based Maintenance (CBM) is becoming more wide-spread
within US industry and the military. The factors that have driven an increase in the use
of CBM include the need for: reduced maintenance and logistics costs, improved
equipment availability, and protection against failure of mission critical equipment.

A complete CBM system comprises a number of functional capabilities: sensing and
data acquisition, signal processing, condition and health assessment, prognostics, and
decision aiding. In addition, a Human System Interface (HSI) is required to provide user
access to the system. The implementation of a CBM system usually requires the
integration of a variety of hardware and software components. Across the range of
military and industrial application of CBM, there is a broad spectrum of system level
requirements including: communication and integration with legacy systems, protection
of proprietary data and algorithms, a need for upgradeable systems, and limits
implementation time. Most purchasers of CBM systems or equipment are also very
sensitive to the costs.

Standardization of specifications within the community of CBM users will, ideally, drive
the CBM supplier base to produce interchangeable hardware and software components.
A non-proprietary standard that is widely adopted will result in a free market for CBM
components. The potential benefits of a robust non-proprietary standard include:
improved ease of upgrading for system components, a broader supplier community
resulting in more technology choices, more rapid technology development, and reduced
prices. This paper will describe an effort underway to develop an open system standard
for CBM systems.

363



Open Systems and Standards: Openness is a general concept that denotes free and
unconstrained sharing of information. In its broadest interpretation, the term "open
systems" applies to a systems design approach that facilitates the integration and
interchangeability of components from a variety of sources. For a particular system
integration task, an open systems approach requires a set of public component interface
standards and may also require a separate set of public specifications for the functional
behavior of the components. The underlying standards of an open system may result
from the activities of a standards organization, an industry consortium team, or may be
the result of market domination by particular product (or product architecture). Standards
produced by recognized standards organizations are called de jure standards. De facto
standards are those that arise from the market-place, including those generated by
industrial consortia. Regardless of the development history of the standards that support
an open system, it is required that the standards are published, and publicly available at a
minimal cost. An example of an open de jure standard is the IEEE 802.3 which defines
medium access protocols and physical media specifications for LAN Ethernet
connections. An example of a proprietary de facto standard is the Windows OS
(operating system). Examples of open de facto standards are the UNIX OS and HTTP.

An open system standard that receives wide-spread market acceptance can have great
benefits to consumers and also to suppliers of conformant products. The emergence of
the IBM PC architecture as a market leading de facto standard stimulated the market for
both PC hardware and software suppliers. It also led to price reductions due to market
competition in the face of rapid technology advances. The emergence of a dominant
proprietary standard for PC operating systems and software resulted in benefits to
consumers in terms of application interoperability, but arguably at the cost of increased
prices and reduced performance compared to the possibilities that an open system
software standard might have offered. In addition to commercial issues, the
interchangeability of components enabled by an open system architecture yields several
technical benefits: system capability can be readily extended by adding additional
components, and system performance can be readily enhanced by adding components
with improved or upgraded capabilities.

CBM Architectures: A complete architecture for CBM systems should cover the range
of functions from data collection through the recommendation of specific maintenance
actions. The key functions that facilitate CBM include:

- sensing and data acquisition
- signal processing and feature extraction

- production of alarms or alerts

- failure or fault diagnosis and health assessment
- prognostics: projection of health profiles to future health or estimation of RUL

(remaining useful life)
- decision aiding: maintenance recommendations, or evaluation of asset readiness

for a particular operational scenario
- management and control of data flows or test sequences

364



- management of historical data storage and historical data access

- system configuration management
- human system interface

Typically, CBM system integrators will utilize a variety of COTS (commercial off the
shelf) hardware and software products (using a combination of proprietary and open
standards). Due to the difficulty in integrating products from multiple vendors, the
integrator is often limited in the system capabilities that can be readily deployed. For
some applications a system developer will engineer an application specific system
solutions. When user requirements drive custom solutions, a significant part of the
overall systems engineering effort is the definition and specification of system interfaces.
The use of open interface standards would significantly reduce the time required to
develop and integrate specialized system components. CBM system developers and
suppliers must make decisions about how the functional capabilities are distributed, or
clustered within the system. Due to integration difficulties in the current environment,
suppliers are encouraged to design and build components which integrate a number of
CBM functions. Furthermore, proprietary interfaces are often used to lock customers into
a single source solution, especially for software components. An ideal Open System
Architecture for CBM should support both granular approaches (individual components
implement individual functions) and integrated approaches (individual components
integrate a number of CBM functions).

A given CBM architecture may limit the flexibility and performance of system
implementations if it does not take into account data flow requirements. To support the
full range of CBM data flow requirements, the architecture should support both time-
based and event-based data reporting and processing. Time-based data reporting can be
further categorized as periodic or aperiodic. An event-based approach supports data
reporting and processing based upon the occurrence of events (limit exceedences, state
changes, etc...). A specific requirement that may be imposed on a CBM system involves
the timeliness of data reporting. Timeliness requirements may be defined broadly as
time-critical or non time-critical. The non time-critical category applies to data messages
or processing for which delays have no significant impact on the usefulness of the data or
processing result. The time-critical category implies a limited temporal validity to the
data or processing result requiring deterministic and short time delays [1]. Two different
messaging approaches may also be employed within a system, synchronous and
asynchronous. In the synchronous model, the message sender waits for a confirmation
response from the message receiver before proceeding to its next task. In the
asynchronous model, the message sender does not wait for a response from the receiver
and closes the communication. The asynchronous model is generally more applicable to
time-critical communications.

A variety of communication models exist for communication between a network of
components, they include: multicast, broadcast, and client-server. In the multicast
model, the information supplier publishes his information to the network, addressed to a
known list of recipients; an asynchronous approach. In the broadcast model, the
information supplier publishes his information to all network listeners and the listeners
must decide if they are interested in the content of the message. Finally, the c-s (client-
server) model pairs a client (who initiates communication) with a server (who is designed

365



to respond to certain requests). The server implements interfaces that may be used by a
client to request a service. A client can only request services available at the server's
public interfaces. Data passing may be implemented by means of a single synchronous
message, or through a pair of asynchronous messages.

Current PC, Networking, and Internet technologies provide a readily available, cost
effective, easily implemented communications backbone for CBM systems. These
computer networks are built over a combination of open and proprietary standards.
Software technologies are rapidly developing to support distributed software
architectures over the Internet and across LANs. There is a large potential payback
associated with market acceptance of an open standard for distributed CBM system
architectures. With the ready availability of network connectivity, the largest need is in
the area of standards for a distributed software component architecture; that subject will
be the focus of the remainder of this paper.

One model for distributed computing is Web-based computing. The Web-based model
utilizes HTTP servers which function primarily as document servers. The most common
medium of information transport on the Web is the HTML page; HTML is a format for
describing the content and appearance of a document. An alternate format for
information transport over the Web is becoming increasingly popular; XML (eXtensible
Mark-up Language). In contrast to HTML, XML is focused on describing information
content and information relationships. XML is readily parsed into data elements that
application programs can understand and serves as an ideal means of data and
information transport over the web. A simple model for data access over the web is a
smart sensor which periodically posts new data in XML format to a Web page.
Information consumers may access that updated data directly from the Web-page. HTTP
servers also provide remote access to application programs by means of the Common
Gateway Interface (CGI). In this model, the interface between the remote client and the
Web server is by means of HTML pages or XML; the webserver utilizes the CGI to
communicate with the application program. The web-based distributed computing model
requires that each data server have HTTP server software. With the development of
compact and embedded HTTP server software it remains a feasible approach.

With the growth of distributed computing, a class of software solutions are evolving
which enable tighter coupling of distributed applications and hide some of the inherent
complexities of distributed software solutions. The general term for these software
solutions is middleware. Fundamentally, middleware allows application programs to
communicate with remote application programs as if the two programs were located on
the same computer. Current middleware technologies include: CORBA, Microsoft's
DCOM, SUN's Java-RMI, and Web-based RPC (Remote Procedure Call). A brief
discussion of the middleware options will be given here, those with a more detailed
interest are referred to [2]. CORBA (Component Object Request Broker Architecture) is
an open middleware standard developed and maintained by the Object Management
Group (OMG) [3]. A number of companies have CORBA based product offerings for a
variety of hardware and OS platforms. DCOM (Distributed Component Object Model) is
the extension of Microsoft's object technology to distributed software objects[41; DCOM
is built into the Windows 2000 operating system and Windows NT 4.0. A number of
software companies have ported DCOM to other OS platforms, however DCOM is just

366



one component of the complete solution for distributed computing which is provided by
Windows 2000. The SUN solution for distributed computing uses JAVA RMI (remote
method invocation) for managing calls to distributed Java objects [5]. JAVA RMI
operates over HOP (the Internet Inter-Orb Protocol)[6], the CORBA protocol for
communication between distributed software components. This allows JAVA RMI based
solutions some level of interoperability with CORBA based solutions.

A middleware technology using XML based RPC over HTTP is emerging as a possible
solution for distributed software systems on the World Wide Web. XML based RPC
utilizes XML syntax for the execution request and for returning the results of the remote
program. The leading standard for XML based RPC is SOAP [7] (the Simple Object
Access Protocol) being developed by Microsoft and DevelopMentor. The XMIL based
RPC approach provides more transparent access to distributed applications than does the
use of CGI scripts. The "full service" middlewares provide better application integration
at the cost of higher upfront development costs, and should provide better system
performance. However, there is a simplicity associated with the XML based approaches
that is attractive.

Looking ahead, it is likely that the market will support a Web-based middleware and one
or more full service middlewares. It is very difficult however, to project which (if any) of
the current technologies will dominate, or when some new technology will come along
and make the current technologies obsolete. A prudent approach would be to develop a
core architecture standard which is technology independent, and extend the core
architecture with implementation specifications for several of the current implementation
technologies.

OSA/CBM: An industry led team has been partially funded by the Navy through a
DUST (Dual Use Science and Technology) program to develop and demonstrate an Open
System Architecture for Condition Based Maintenance. The team participants cover a
wide range of industrial, commercial, and military applications of CBM technology:
Boeing, Caterpillar, Rockwell Automation, Rockwell Science Center, Newport News,
and Oceana Sensor Technologies. Other team contributors include the Applied Research
Laboratory at Penn State, and MIMOSA (Machinery Information Management Open
System Alliance). The focus of the team is the development and demonstration of a
software architecture that facilitates interoperability of CBM software modules. This
section will give an overview of the architecture being developed.

MIMOSA is a not-for-profit trade association founded in 1994 and incorporated in
December of 1996. Their general purpose is the development and publication of open
conventions for information exchange between plant and machinery maintenance
information systems. The core of the MIMOSA development activity is the MIMOSA
CRIS (Common Relational Information Schema). The second version of the CRIS
(CRIS V2.1) was released in May 2000 and is publicly available at the MIMOSA website
[8]. The CRIS defines a relational database schema for machinery maintenance
information. The schema provides broad coverage of the types of data that need to be
managed within the CBM domain:

- A description of the configuration of the system/equipment being monitored

367



- A list of specific assets being tracked, and their detailed characteristics
- A description of equipment functions, failure modes, and failure mode effects

- A record of logged operational events
- A description of the monitoring/measurement system (sensors, data acquisition,

measurement locations, etc.) and the characteristics of monitoring components
(calibration history, model number, serial number, etc.)

- A record of sensor data (and its characteristics) whether acquired on-line, manually
logged, or manually acquired using hand held roving instrumentation.

- A means of describing signal processing algorithms and the resulting output data

- A record of alarm limits and triggered alarms
- A means of describing diagnoses of evolving equipment faults and projections of

equipment health trends.

- A record of recommended actions and the basis of those recommendations

- A record of work requests from initiation through completion.

Based upon the CRIS, MIMOSA has also defined several system interface standards. A
set of import/export file formats has been defined and released, followed by a set of SQL
client/server interfaces. Currently under development is a complete set of XML
interfaces for CRIS V2.1 defined by means of DTDs (XML Document Type Definition).
These will be released after beta testing is completed.

The OSA/CBM development approach was formulated based on the assumption that the
large body of work that constitutes the MIMOSA open standards would be used as a
basis for development. The CRIS represents a static view of the data produced by a
CBM system. The MIMOSA interface standards define open data exchange conventions
for sharing of static information between CBM systems (openness at the intra-system
level). The goal of the OSA/CBM project is the development of an architecture (and data
exchange conventions) that enables interoperability of CBM components (openness at the
inter-system level). Figure 1 illustrates the distinction being made. Figure la illustrates a
CBM solution composed of components with proprietary interfaces, but open at the intra-
system level. The proprietary system solution is enclosed in a MIMOSA compliant
wrapper which exposes a set of public MIMOSA compliant server interfaces (X, Y, Z).
The interface set (X, Y, Z) allows external clients open access to the information
generated within the proprietary system solution. Figure lb illustrates a CBM system
open at the inter-system and intra-system levels. In this case the individual components
all expose public server interfaces (a, b, c ... i). These component interfaces offer
access to the data and services supplied by the component, and provide for open
information flow between components during system operation. In addition, components
may be readily replaced by components with improved capability as long as they follow
the same public interface standards. If the interface standard is an open standard that has
market acceptance, there should be available COTS components which may be readily
integrated for the purpose of expanding or upgrading the system capability. If the open
component interfaces are based on the same information model as the open system level
interfaces, the mapping between the two sets of interfaces will be significantly simplified.

368



X,Y,Z X,Y,Z

1-1- h i

a) MIMOSA compliant CBM b) MIMOSA compliant CBM
system with proprietary component system with open component
interfa es interfaces

Figure 1: Granularity of an Open System Solution

After evaluating a variety of architectural options, a decision was made to develop an
object oriented architecture based upon a client-server approach to distributed computing.
The initial architecture development direction was focused towards the loosely coupled
Web-based approach and XML messages over HTTP. There were significant concerns
that this approach would limit the usefulness of the resulting standard based on
performance limitations. However, tying the architecture to a specific full-service
middleware brought up concerns about being tied to proprietary middleware technology,
or selecting a technology which might achieve limited market acceptance. The approach
that was ultimately adopted was to develop a technology-neutral abstract design
specification, which could then be mapped to implementations utilizing any of the
implementation technologies discussed earlier. The decision was also made to utilize an
object oriented design methodology as a core strategy. The components of the
architecture will be discussed in more detail later.

In order to standardize an architecture for CBM components, the first step as suggested
by Figure lb is to assign the CBM system functions defined earlier to a set of standard
software components. The software architecture has been described in terms of
functional layers. Starting with sensing and data acquisition and progressing towards
decision support, the general functions of the layers are given below. A complete
description of the inputs and outputs required for a given layer is beyond the scope of this
paper.

Layer 1 - Sensor Module: The sensor module has been generalized to represent the
software module which provides system access to digitized sensor or transducer data.
The sensor module may represent a specialized data acquisition module that has analog
feeds from legacy sensors, or it may collect and consolidate sensor signals from a data
bus. Alternately, it might represent the software interface to a smart sensor (e.g. IEEE

369



1451 compliant sensor). The sensor module is a server of calibrated digitized sensor data
records.

Layer 2 - Signal Processing: The signal processing module acquires input data from
sensor modules or from other signal processing modules and performs single and multi-
channel signal transformations and CBM feature extraction. The outputs of the signal
processing layer include: digitally filtered sensor data, frequency spectra, virtual sensor
signals, and CBM features.

Layer 3 - Condition Monitor: The condition monitor acquires input data from sensor
modules, signal processing modules, and from other condition monitors. The primary
function of the condition monitor is to compare CBM features against expected values or
operational limits and output enumerated condition indicators (e.g. level low, level
normal, level high, etc). The condition monitor also generates alerts based on defined
operational limits. When appropriate data is available, the condition monitor may
generate assessments of operational context (current operational state or operational
environment). Context assessments are treated, and output, as condition indicators. The
condition monitor may schedule the reporting of the sensor, signal processing, or other
condition monitors based on condition or context indicators, in this role it acts as a test
coordinator. The condition monitor also archives data from the Signal Processing and
Sensor Modules which may be required for downstream processing.

Layer 4 - Health Assessment: The health assessment layer acquires input data from
condition monitors or from other health assessment modules. The primary function of
the health assessment layer is to determine if the health of a monitored system,
subsystem, or piece of equipment is degraded. If the health is degraded, the health
assessment layer may generate a diagnostic record which proposes one or more possible
fault conditions with an associated confidence. The health assessment module should
take into account trends in the health history, operational status and loading, and the
maintenance history. The health assessment module should maintain its own archive of
required historical data.

Layer 5 - Prognostics: Depending on the modeling approach that is used for prognostics,
the prognostic layer may need to acquire data from any of the lower layers within the
architecture. The primary function of the prognostic layer is to project the current health
state of equipment into the future taking into account estimates of future usage profiles.
The prognostics layer may report health status at a future time, or may estimate the
remaining useful life (RUL) of an asset given its projected usage profile. Assessments of
future health or RUL may have an associated diagnosis of the projected fault condition.
The prognostic module should maintain its own archive of required historical data.

Layer 6 - Decision Support: The decision support module acquires data primarily from
the health assessment and prognostics layers. The primary function of the decision
support module is to provide recommended actions and alternatives and the implications
of each recommended action. Recommendations include maintenance action schedules,
modifying the operational configuration of equipment in order to accomplish mission
objectives, or modifying mission profiles to allow mission completion. The decision
support module needs to take into account operational history (including usage and

370



maintenance), current and future mission profiles, high level unit objectives, and resource
constraints.

Layer 7 - Presentation: The presentation layer may access data from any of the other
layers within the architecture. Typically high level status (health assessments, prognostic
assessments, or decision support recommendations) and alerts would be displayed, with
the ability to drill down when anomalies are reported. In many cases the presentation
layer will have multiple layers of access depending on the information needs of the user.
It may also be implemented as an integrated user interface which takes into account
information needs of the users other than CBM.

After defining the layers in the architecture, a decision was made to focus the standard on
the specification of interfaces for layers 1 through 5. Although a general set of interfaces
may be conceptually described for the decision support layer, the structure of the
information that it serves is tied to the specific requirements of the targeted application to
a degree that standardization of the interface is not feasible. Since the presentation layer
acts only as a client in the c-s communication model there are no server interfaces that are
required to be defined.

The components of the OSA/CBM architecture are shown in Figure 2. The primary
inputs to the architecture definition are the functional description of the layers (as
discussed above) and the MIMOSA CRIS, along with the general requirements described
in the section on CBM Architecture. An object oriented data model has been defined
(using Unified Modeling Language - UML - syntax) based upon a mapping of the
MIMOSA relational schema to the OSA/CBM layers. For a given layer of the

MIMOSA
CRIS

T Functional
OSA/CBM Description of

Data OSA/CBM
Model Prognostics Layer

Health Assessment
Abstract IDL Common Condition Monitor

Interface /l Signal Processing
Specification Policies Sgnso Poe

Sensor Module

Ra X 19 1Implementation Standards

Data Type Mapping
0 interface descriptions

-Implementation specific
data flow policies

Figure 2: Outline of the OSA/CBM Architecture

371



architecture, the data model does not describe all of the object classes that would be
required for a software implementation. The focus is on describing the structure of the
information that might be of interest to clients of that layer. In fact, in the same way that
the MIMOSA interface standard does not impose a structure on the components that
comprise a MIMOSA compliant system, OSA/CBM does not impose any requirements
on the internal structure of compliant software modules. The architectural constraints are
applied to the structure of the public interface and to the behavior of the modules. This
approach allows complete encapsulation of proprietary algorithms and software design
approaches within the software module.

The common data flow policies were defined to standardize the approach to time-based
and event-based messaging. In general, the information consumer (at the higher layer of
the architecture) will initiate requests for information (a pull rather than a push messaging
model). Requests for static information, information which is expected to be available
upon request, (e.g. configuration information) will use synchronous messaging protocols.
Requests for dynamic information (new sensor data, or updated processing results) will
use asynchronous messaging protocols. The asynchronous messaging model requires
that the supplier implement a "requesto" interface and the consumer a corresponding
"notifyo" interface.

This messaging model defined above supports time-based or event-based pull of
information but does not support event-based push from the information supplier. Event-
based push may be implemented by the information supplier acting as a client and
utilizing the information consumer's "notifyo" interface to initiate communication.
Implementation of this messaging model also requires that the supplier can associate a set
of information consumers to a particular triggering event.

At the time of implementation, further design decisions may be necessary with respect to
data passing. An information supplier may pass actual data elements, or alternately may
pass remote references which the information consumer may use to "callback" to get the
actual data. There are pros and cons to each approach, but a complete discussion is
beyond the current scope. The further detail of the messaging approach will be called out
as part of the implementation specific data flow policies.

For CORBA, DCOM and JAVA-RMI implementations, the software interfaces are
formally described using their own specific Interface Definition Languages (IDL). In
order to commonize the various implementations to the greatest extent possible, the
architecture utilizes a common abstract IDL specification (the abstract IDL will be
specified using the CORBA IDL syntax). The abstract IDL describes a set of common
data structures and interface configurations. The OSA/CBM standard will include
mappings to several of the implementation technologies listed in figure 2 (XML and
DCOM implementation specifications are currently being developed). Although the
abstract specifications provide a strong base of software commonality, software
i nteroperability would not be possible without the detailed implementation specifications.
Software applications implemented using different technologies will not be interoperable.
In order to have interoperability between applications built in CORBA and DCOM, for
instance, a software interface (typically called a bridge) would be required to implement a
a mapping. The OSA/CBM architecture still provides strong benefits in this case. The
efforts involved in designing and building the bridge will be significantly reduced due to

372



the common core design requirements and the existence of the associated implementation
standards. This view of the architecture also illustrates its extensibility to new or
evolving middleware technologies; the core architecture may be mapped to an
implementation in the new technology. Since the core software architecture has not
changed, existing applications should be able to be readily ported to the new middleware.

Current Status: The architecture that has been discussed is being applied in
demonstrations across a variety of different CBM applications as a part of the DUST
program. The demonstrations will cover several of the technologies which were
discussed, and associated implementation standards will be developed. Lessons learned
during the implementation process will be used to update and improve the core
architecture. The architecture is also being evaluated for transition by both ARMY and
NAVY programs. The ARMY is evaluating the use of the MIMOSA and OSA/CBM
standards as a part of their maintenance architecture. Other NAVY research programs in
the area of CBM are being directed to consider the OSA/CBM architecture in their
system and component designs [9].

Acknowledgment: This work was supported by the Office of Naval Research through
the OSA-CBM Boeing DUST (Grant Number N00014-00-1-0155). The content of the
information does not necessarily reflect the position or policy of the Government, and no
official endorsement should be inferred.

References:

[1] Thomesse, J.P., and Leon Chavez, M. "Main Paradigms as a Basis for Current Fieldbus
Concepts," Fieldbus Technology, Systems Integration, Networking and Engineering. Dietrich,
D., Neumann, P., and Schweinzer, H., eds. Vienna: Springer-Verlag, 1999.

[2] Serain, D. Middleware. London: Springer-Verlag, 1999.

[3] Object Management Group (OMG) Website, http://www.omg.org/

[4] Microsoft. "COM: Delivering on the Promises of Component Technology."
http://www.microsoft.com/com/default.asp

[5] Sun Microsystems. "Introduction to the J2EE Architecture."
http://developer.iava.sun.com/developer/technicaIArticles/J2EE/Intro/index.html.

[6] Sun Microsystems. "Remote Method Invocation over HOP."
http:/Java.sun.com/products/rmi-iiop.

[7] W3C Note 08 May 2000, "Simple Object Access Protocol (SOAP) 1.1."
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[8] MIMOSA Website, http://www.mimosa.org/

[9] Roemer, M. J., et. al, "Prognostic Enhancements to Naval Condition-Based
Maintenance Systems," Improving Productivity Through Applications of Condition
Monitoring, 55t Meeting of the Society for Machinery Failure Prevention Technology,
April, 2001.

373


