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Abstract: A method to accurately assess the state-of-charge (SOC), state-of-health
(SOH), and state-of-life (SOL) of electrochemical energy sources provides significant
benefit to operational systems. The model-based effort described here is focused on
predictive diagnostics for primary and secondary batteries. It can also be applied to other
electrochemical energy sources, such as fuel cells. This method is based on accurate
modeling of the transport mechanisms within the battery and requires carefully developed
electrochemical and thermal models. New features are developed from these models and
are used in conjunction with several traditional measured parameters to assess the
condition of the battery. Data fusion of feature vectors is used to develop inferences
about the state of the system. The resulting output and any usage information available
about the battery is then evaluated using hybrid automated reasoning schemes consisting
of neural network and decision theoretic methods. The focus of this paper is on model
identification and data fusion of the monitored and virtual sensor data. The methodology
and analysis presented is applicable to mechanical systems where multiple sensor types
are used for diagnostic assessment.

Key Words: Automated reasoning; condition-based maintenance; data fusion;
electrochemical impedance; model-based diagnostics; predictive diagnostic techniques;
state-of-charge

Introduction: Batteries are an integral part of many machines and are critical backup
systems for many power and computer networks. Failure of a battery could lead to loss
of operation, reduced capability, and downtime. An efficient way to monitor a battery’s
performance and assessment of its condition could drastically increase the reliability of
these systems. The present condition of a battery is described nominally with the state-
of-charge (SOC), which is defined as the ratio of the remaining capacity and the initial or
rated capacity. Thus, the service history of a cell and its nominal capacity impact the
assessment of SOC. Secondary batteries are observed to have a capacity that deteriorates
over the service life of the cells. The term state-of-health (SOH) is used to describe the
physical condition of the battery, ranging from external behavior such as loss of rated
capacity, to internal behavior such as severe corrosion. The remaining life of the battery
(i.e. how many cycles remain, usable charge, etc.) is termed the state-of-life (SOL), the
prognostic metric. In this paper, a model-based effort is presented for predictive
diagnostics of primary and secondary batteries. The flow of the model-based predictive
diagnostics processing is shown in Figure 1. There are five distinct stages of the

165




processing: 1) measurement of signals related to diagnostics; 2) extraction of key features
(such as model parameters); 3) charge, health, and life prediction; 4) decision processes
that combine the predictions with knowledge and history; and 5) output of user
information for display or coordination with other systems. The specific objectives of the
model-based approach described here are determination of the SOC, SOH, and SOL.
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Figure 1. Flow diagram of developed predictive diagnostics processing

Model-based Approach: The general approach to model development is to formulate
robustly parameterized governing equations for energy conservation and relevant
electrochemical phenomena and transport processes. Lumped parameter formulation in
lieu of a spatially distributed formulation offers greater applicability to the broad variety
of cell chemistries and battery designs. That is, explicit geometry and configuration input
are not required. The parameters and sources of the various transport, state, and
conservation equations are coupled to ensure consistency with experimental observations
and facilitate system classification. The model parameterization is formulated to
incorporate significant aging mechanisms and pathological behavior in order to provide
fault diagnostic capability. The ability to forecast future battery performance is
developed by tuning system parameters through history-matching trials.

Data Fusion Techniques: A core challenge is to develop the appropriate signal
processing, sensor-level data fusion, and automated reasoning to support battery
diagnostics, charge control, and ultimately, prognosis of remaining cycles. Multi-sensor
data fusion techniques that combine data from actual and virtual sensors provide the
potential to improve detection performance and reduce the number of false alarms [1].
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Automated Reasoning: The hybrid automated reasoning modules developed previously at
the Pennsylvania State University Applied Research Laboratory (ARL) integrate a variety
of predictive diagnostic techniques, such as neural networks, fuzzy logic, and auto-
regressive moving average (ARMA) models, via decision-level data fusion[2], [3]. The
outputs of these techniques are three estimates of the battery state and optimal charge
control based on electrochemical and thermal data and available usage information. They
are combined using hybrid automated reasoning modules, consisting of neural network
and decision theoretic methods, to provide a single estimate of the battery’s state. This
output can be obtained as a linguistic indication or as numerical indication and is coupled
with a measure of confidence. This type of tool is beneficial because it utilizes key
information from multiple estimations for robustness and presents the results of the
fusion assessment, rather than a mere data stream.

Measurement and Data Collection: The first step to developing model-based
diagnostics is to establish the necessary and available observables (i.e., what can be
measured and its sufficiency). Changes in the electrode surface, diffusion layer, and
solution are not directly observable without disassembling the battery cell. Other
variables, such as potential, current, and temperature, are observable and can be used to
indirectly determine the performance of physical processes. This is the rationale for
choosing a model-based approach. Under these constraints, the following types of
measurements were selected for battery diagnostics: terminal and cell voltages, load
currents, surface and internal temperatures, electrolyte pH, and electrical impedances. To
ensure maximum coverage of operating modes for testing developed algorithms, test
stand data were collected under the following conditions:

1. No load, fully charged 3. Noload, 100% discharged
2. Once every minute while discharging 4.  Once every minute while charging

An ongoing experimental test schedule is being conducted under an Office of Naval
Research (ONR) sponsored battery project, where lead-acid, nickel-cadmium, lithium,
and alkaline batteries are being run to failure. During a test, battery impedance data is
collected along with cell and terminal voltages, load current, and temperatures at various
internal and external locations on the battery. To date, over 200 data sets have been
collected across the different chemistries and sizes of batteries.

Electrochemical Impedance Model Identification: Direct measurements of battery or
cell condition have traditionally been very difficult for practical systems such as
automotive or aviation batteries. There are, however, a variety of indirect measurement
techniques that rely on the cell’s response to a precise manipulation of the load [4], [5],
[6]. One of the most robust and widely used methods in laboratory practice is AC
Voltammetry. This technique can provide information on the electrochemical dynamics
of the battery through a non-invasive interrogation of the cell. By applying a small
amplitude excitation to the cell and measuring the response, the internal impedance of the
cell can determine. Figure 2 represents the measured impedance of a nickel-cadmium
battery that has been partially discharged.
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Figure 2. Impedance of 4.3 Amp-hour nickel-cadmium battery, partially discharged
and fit to impedance model

Internal impedance measurements can further be used to retrieve information about the
electrochemical processes that occur within the battery. This is accomplished using
electrical circuit analogs such as the Randles circuit, which represents the electrode-
electrolyte interface processes, and a minima search method. For model identification, a
better fit of the impedance data was found using a two-electrode Randles circuit model
(Figure 3).

Figure 3. Two-electrode Randles circuit model with wiring inductance

The equation for this circuit is given as

s”é’+ +a+«/§ s%0_+o_2

= +R,+ +sL (1)
$%0,Cp,. +5Cp0,N2+s% 1 $%0.C,y +5Cp, 0 2 +5"

Zcell (S )

In (1), s = jo (o is frequency in rad/s), Rq represents the electrolyte resistance, 0
represents the charge transfer resistance, Cp, represents the double layer capacitance, ¢
represents the diffusion layer coefficient, and Z.n represents the Warburg impedance
(Zw) of the cell. These parameters represent the physical electrochemical processes, such
as charge and mass transfer, which occur during cycling. See [4], [5], [7] for a
description of these electrochemical processes.
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The above parameters are extracted from the impedance measurements using a minima.
search method. For this approach, a simulated annealing algorithm was chosen. Unlike
many local minima search methods, simulated annealing offers a global search [8]-[11].
Search regions, based on the identified parameters from previous impedance
measurements, are used to minimize processing iterations. The model-identified
electrolyte resistance of a nickel-cadmium battery during discharge, which was found
using simulated annealing as the minima search method, is shown in Figure 4.
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Figure 4. Model-identified electrolyte resistance of a nickel-cadmium battery using
simulated annealing

State-of-Charge Prediction Models: The previous section addressed the extraction of
physically meaningful parameters, such as charge transfer resistance, to more strongly
connect SOC, SOH, and SOL predictions to internal battery processes. These virtual
sensor signals (i.e., identified model parameters) also provide the decision processing
with a check for bad signals. Referring to Figure 1, this section focuses on the developed
SOC prediction modeling, primarily addressing the neural network and ARMA modeling
and results. Work pertaining to the fuzzy logic prediction model is currently under
investigation and results are being analyzed.

ARMA Modeling: Autoregressive (AR) modeling is a powerful linear modeling
technique employed for predictive diagnostics [12], [3]. In order to assess battery
capacity, an analytical model of battery dynamics is useful. Autoregressive moving
average (ARMA) modeling is commonly used for system identification because it is
linear and easy to implement. It is also a good complement to the more complex models
(neural network and fuzzy logic) being used. An ARMA model was thus chosen for
assessment of battery SOC and is represented by the equation:

y(t)=a X(t) + b X(t-1) + ¢, y(t-1), @)
where y represents SOC, X represents a vector of model inputs, and a, b, and c,

represents the model coefficients. Model coefficients are calculated during training of
the model, where a least squares fit of data from a previously discharged battery is
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performed [13]. The model uses instantaneous measurements, as well as past
measurements of the system, to monitor changes in the system. Inputs to the model
include electrochemical impedance parameters, voltage, current and temperature
measurements, and past SOC predictions.

The ARMA model has been trained and tested on five different kinds of batteries with
varying size, chemistry, and type: two sizes of primary poly-carbonmonofluoride (CF),
lithium (C and 2/3 A), two sizes of secondary nickel-cadmium (C and D), and one size of
secondary lead-acid (12 volt).

Initial testing was performed on eight size C and nine 2/3 A (CF), lithium batteries.
Training was performed on one battery of each size and used to predict the other batteries
of the same size. As shown in Table I, the model was very effective for this battery
chemistry. The average prediction error for both sizes was less than 3%.

Table 1. Results of ARMA model SOC predictions

Chemistry Size # Cells Type léiig;c:g';
Lithium' C 1 Primary 2.18
Lithium' 213 A I Primary 2.87
NiCad® D 1 Secondary 3.17
NiCad’ C 1 Secondary 4.50

Lead-Acid | 12 Volt 6 Secondary 9.13

! Poly-carbonmonofluoride-lithium (spiral type)
? Nickel-cadmium

Tests were also performed on nine size C and nine size D nickel-cadmium batteries.
Similar results were obtained for these batteries as well, with average prediction errors of
less than 5% (Table I). Although these batteries are secondary cells, only a few cycles
from each battery were completed for analysis.

Final testing was performed on five 12-volt lead-acid starter batteries containing six cells
each. Because these batteries are secondary, training was performed on an initial cycle of
each battery and retrained after every additional cycle. Despite the fact that health effects
make prediction more difficult, the model performed well on this chemistry. As shown in
Table 1, average prediction error was less than 10%.

Neural Network Modeling: An artificial neural network is a parallel distributed
processing system inspired by biological neural networks. It consists of information
processing units, called neurons or units, that are interconnected through connection
weights to produce a desired output in response to its inputs. For battery SOC
predictions, networks were trained to produce either a direct prediction of SOC or an
estimation of initial battery capacity during the first few minutes of the run. All networks
used for battery SOC estimation contained one hidden layer of neurons. The
backpropagation gradient decent learning algorithm was used, which utilizes the error
signal to optimize the weights and biases of both network layers.
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The performance of the neural networks for direct SOC prediction was found to be quite
consistent. The results for size C lithium batteries (runs 9-16) and size 2/3 A lithium
batteries (runs 17-25) are given in Table II.

Table IL Errors for neural network direct SOC prediction of (CF), lithium batteries

Network Topolo Average Average Maximum
[# Hidden Nel; mf:'] Size | Training Error | Testing Testing Error
[Training Set] Error [Run #)
Feed Forward [6] C 02% [14] 25% 6.0% [11]
Feed Forward [6] | 213 A 1.5% [18] 5.0 % 7.4% [17]
Time Delay [7] C 03% [14] 3.0% 7.1% [11]
Time Delay [7] 2/3A 08% [18] 4.7 % 8.0% [20]

Networks were also trained to estimate the initial capacity of the battery during the first
few minutes of the test. The SOC of the battery was then calculated directly by using the
cumulative discharge current. This method can be a powerful tool for mission planning.
Hypothetical load profiles could be used to predict whether the battery would survive or
fail during a given mission, thus preventing the high cost and risk of batteries failing in
the field. Results of this network on lithium batteries are given in Table 1.

Table IIL Error rates for SOC prediction based on initial capacity estimation with
neura!l networks for (CF), lithium batteries

Network Topolo Average Average Maximum
[#Hidden Ne[; rongs)i Size | Training Error | Testing | Testing Error
[Training Set] Error [Run #]
24 %
Feed-forward [5] C [13 14 16] 5.7 % 9.1% [11]
3.0%
Feed-forward [5] 213 A [17 18 20] 7.9 % 104 % [23}
. . 0.6%
Radial Basis [6] C [13 14 16] 4.6 % 6.8 % [15]
. . 23%
Radial Basis [/1] 2/3 A (17 18 20} 34 % 49 % [19]

The SOC assessment by neural networks was very good. Although the average error is
slightly higher than for the ARMA predictors, two important strengths of the neural
network predictors outweigh that drawback: (i) maximum error on outliers was not
significantly larger than the average error, and (ii) the network provides a conservative
prediction (i.e., it does not over-predict the SOC). Both of these advantages are very
important in practical systems where certification and low false alarms can impact
whether a system is actually used or shelved.

SOC Modeling Remarks: Considering that very little training data are used to produce the

predictions, results for both types of models are quite impressive. As more data are
collected and several runs of each level of initial battery SOC become available, the
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robustness of the predictors is likely to improve. The key distinction between the ARMA
and neural network approaches is that the ARMA model assumes an explicit linear form
of the predictor, while the neural network attempts to discover an implicit nonlinear
model that captures the intricacies of the battery dynamics. If the model is of adequate
degree, the ARMA model should require fewer runs than the neural network. However,
the neural network can better represent nonlinearity (i.e., a variable load) and, thus,
provide better generalization across the sample.

The models performed poorly on two of the tested batteries, which are examples of
outliers that can skew most predictors. For such cases, the best predictors do not attempt
to accurately predict the outliers; instead they seek rough conservative estimates that will
allow the system to quickly flag the outliers. In this case, the batteries likely were faulty
in some respect. It is the focus of SOH research to identify and assess the severity of
existing or impending battery faults and this topic is briefly discussed below. The benefit
of a good initial capacity estimator is a valuable capability not only during the operational
scenario, but also for quality control purposes.

Fault and End-of-Life Prediction: For primary batteries, the SOC is also the SOL; once
the charge is depleted the battery cannot be used again. However for secondary batteries,
the SOC only represents the cycle life and not the total life of the battery because
multiple discharges are possible.

State-of-Health: For secondary batteries, the life
of the battery is defined by the number of usable
cycles that remain until failure. For example,
batteries are commonly removed from service
when their discharge capacity has been reduced
to 65% of the original capacity, indicating the
end limit for usable cycles [14]. Other end-of-
life conditions include short-circuited cells and
low terminal voltage. In addition, a number of
ageing mechanisms (dry-out, passivation, etc.)
progress during a battery’s life, resulting in its Good Health Passivation
eventual failure. Each mechanism wears the ‘

battery at a different rate and simultaneous
fail_ure progression is ‘common. Identifying Figure 5. Failure identification
w?uch faults are occurring apd‘to what degree using statistical pattern recognition
will dictate the SOL prediction model that

should be used. This classification of faults is an estimation of the battery’s SOH. Much
like the SOC approach to having three separate, parallel processing methodologies for
prediction, the SOH estimation processing involves three different processing branches:
statistical pattern recognition using linear discriminant functions, neural network-based
pattern recognition, and fuzzy logic-based classification [15], [16].  Figure 5
demonstrates an example of battery failure identification using statistical pattern
recognition. Axis labels o and B represent measured or derived parameters that are used
to identify the failures.
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State-of-Life: Once faults and their
severity are identified from the SOH
processing, the proper SOL prediction \
model can be selected. Figure 6
shows a case where dry-out was
identified as the dominant SOH
condition in a lead-acid starter
battery. As a result, a dry-out trained
SOL predictor was used to predict the
remaining usable cycles. Had a
different dominant failure mechanism
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Decision Fusion Processing: As previously mentioned, the SOC, SOH, and SOL
processing makes three parallel predictions. This approach provides three assessments of
the battery’s condition. These three predictions are fed into a decision-processing module
that determines the predictors’ effectiveness relative to each other, processed sensor data,
previous history, and knowledge about the battery type. The decision processing uses this
information, via hybrid automated reasoning modules, to yield a combined prediction of
the SOC, SOH, or SOL with a measure of confidence. Research on the decision-
processing portion of the overall processing flow is currently under way. Referring to
Figure 1, decision fusion represents the final stage of the processing; the output is then
fed to a user interface that can display or coordinate the battery condition data.

Conclusions: Condition-based maintenance provides a means for improving the
reliability of battery management in operational systems. For primary batteries, this
represents using the full capacity of the battery before it is replaced. For secondary
batteries, this represents cycling the battery to its true last usable cycle, rather then a
conservative, statistical-based last cycle. In the case of a backup or standby battery, this
represents knowledge of usage capacity prior to putting the battery online. The model-
based approach described in this paper provides a framework for predicting SOC, SOH,
and SOL. It has been shown that in addition to voltage, current and temperature, the
internal electrical impedance of the battery ties closely to the physical processes that
drive capacity and aging. A robust identification routine was developed and these
identified parameters, along with measured signals, were used develop and test SOC,
SOH, and SOL predictors. The developed ARMA and neural network SOC prediction
models were discussed and shown to perform well across different battery chemistries
and sizes. Some initial results were presented from the SOH and SOL prediction
development; however, this work is still in its early stages. Finally, the framework for
the decision fusion processing, which provides additional error checking and
performance enhancement, was discussed. Most of the analyzed data was collected on a
laboratory test stand under controlled conditions. Plans are being made to collect field
data to test the developed model-based predictive diagnostics on battery systems (and
other electrochemical energy sources) under real-world operating conditions.
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