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Abstract: In recent years, numerous machinery health monitoring technologies have been developed
by the U.S. Navy to aid in the detection and classification of developing machinery faults for various
Naval platforms. Existing Naval condition assessment systems such as ICAS (Integrated Condition
Assessment System) employ several fault detection and diagnostic technologies ranging from simple
thresholding to rule-based algorithms. However, these technologies have not specifically focussed on
the ability to predict the future condition (prognostics) of a machine based on the current diagnostic
state of the machinery and its available operating and failure history data. Prognostic capability is
desired because the ability to forecast this future condition enables a higher level of condition-based
maintenance for optimally managing total Life Cycle Costs (LCC). A second issue is that a
framework does not exist for "plug 'n play" integration of new diagnostic and prognostic technologies
into existing Naval platforms. This paper will outline a generic framework for developing plug 'n play
prognostic "modules" as well as examples of specific prognostic modules developed for steam turbine
journal bearings and auxiliary gearboxes. The gearbox prognostic module was calibrated and verified
using gearbox seeded fault and accelerated failure data taken with the MDTB (Mechanical Diagnostic
Test Bed) at the ARL Lab at Penn State University.

Keywords: Prognostics, Condition-based Maintenance, Open System architectures

Introduction: The U.S. Navy has identified the benefits of condition-based maintenance for
reducing the life cycle costs of critical shipboard equipment, improving system readiness, and
allow more efficient allocation of reduced human resources. Introducing CBM enabling
technologies such as advanced diagnostics and prognostics onto Naval platforms that employ
SMART and conventional Command, Control, and Communication (C3) systems, appropriate
Human-System Interfaces, and various sensor technologies is paramount to achieving these goals.
Specifically, these initiatives included:

"* Integrating feature-based and model-based prognostics in a real-time environment.
"* Developing a "Toolbox" of generic prognostic approaches useful for a wide variety of applications.
* Capitalizing on Al Technologies for fault identification, expert system development, and

prediction.
• Designing a Human System Interface concept for knowledge-rich and efficient information access
0 Making CBM enabling technologies "Plug 'n Play" in an Open Systems Architecture for ease of

data transfer and continuous enhancement of shipboard technologies.
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The technology development costs of advanced plug and play diagnostics and prognostics for steam
and gas turbine components was validated for the reasons given below. They are aimed at reducing
operations and maintenance costs by 50% and predicting component failures and/or degradation with
1-sigma confidence bound of 100 hours.

"* Steam and gas turbine component failures and degradation can account for up to 5% of downtime
associated with shipboard applications.

"* The maintenance and operational costs can be in excess of approximately $5,000 per day for a
DDG class ship.

"* Prediction of component failure and degradation and maintenance optimization can reduce
expected (risk*consequential cost) life cycle costs by up to 30% for steam and gas turbine
applications.

Several technologies have been developed or transitioned to help achieve these goals which
fundamentally fall in the categories of:

1) Automated sensor/data integrity assessment
2) Improved anomaly detection and feature extraction
3) Data and knowledge fusion processes
4) Feature and model-based prognostics

The capability of each category builds upon the functionality of the previous category with
effective prognostics utilizing elements of data validation, anomaly detection, feature extraction
and fusion. However, categories 1-3 are outside the scope of this paper. This paper will deal
primarily with the design and functionality of prognostic modules, related open system
architecture issues, and provide detailed examples of prognostics.

Prognostics Modules: A comprehensive prognostic capability for critical components and/or
systems must be capable of integrating existing technologies such advanced features extraction
(i.e. vibration, oil analysis, etc.) techniques and empirical/physics-based modeling approaches. In
addition, due to the inherent uncertainty involved with predicting future events, prognostic
modules should also incorporate a probabilistic framework to directly identify confidence bounds
associated with specific component/system time-to-failure predictions. This approach should also
be capable of integrating component reliability and inspection results, as well as provide
statistical updating methods to accommodate modeling, operational and material property
uncertainties known to exist.

To achieve this broad-based inclusion of prognostic technologies into Naval CBM systems, prognostics
must utilized and implemented based on inputs from leading feature-based and model-based
technologies. It is important to note the intrinsic differences between feature-based prognostics and
physics-based prognostics, both in terms of accuracy and applicability, from the operations and
maintenance perspectives. In short, the operational perspective relies on more near term predictions of
remaining usefui life (RUL). The feature-based prognostic approaches address this perspective because
they can only make RUL estimates when a particular feature or features associated with a known fault
condition has been observed. This characteristic of feature-based prognostics is illustrated in Figure 1.
This plot shows how a feature-based RUL prediction becomes accurate only when diagnostic
information or features become available. Without these features, no viable prediction can be
calculated.
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Figure 1 Typical RUL Prediction using Feature-Based Prognostics

Model-based prognostics differ from feature-based prognostics in that they can estimate RUL based
only on operational conditions and can be "calibrated" based on any relevant diagnoses that are made.
This form of prognostic relies upon high fidelity models (i.e. Finite Element or State Space) that are
developed a-priori. Because this form of prognostics can make a RUL estimate in the absence of
diagnostic information, it can be used for more long-term predictions as well as short-term ones [6]. It
can address questions like what is the failure risk 6 months into the future if the expected future
operational profile is known. Figure 2 shows the relationship between diagnostics and a-priori
knowledge in the functionality of feature and model-based prognostics from the operations and
maintenance perspectives.

One of the key aspects of this integrated prognostic approach is that it is flexible enough to accept input
many different sources of information in order to contribute to better fault prediction on remaining
useful life. Within this architecture, measured feature data is processed in the diagnostic block, with
relevant processed feature information passed to the prognostic block. Next; this information is
combined with the model-based estimate to examine the current and future risk associated with a
particular failure mode. This block diagram is simplistic in order to highlight the important
components of an integrated prognostic module. A more detailed description of the various
technologies that have been implemented for particular applications is given in the following sections.

Anomaly Detection /Diagnostics

Prognostic
Module

Figure 2 Generic Prognostic Process and Maintenance Integration

Gearbox Prognostic Module: A physics-based model for geartooth failure is the first prognostic
model that will be presented. This model was chosen because it could be validated and calibrated
on seeded fault / run-to-failure data available with the MDTB (Mechanical Diagnostic Test Bed)
at the ARL Lab at Penn State University.
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This prognostic module is a near real-time, self-calibrating, physics-based statistical RUL
predictor of gear tooth failure due to tooth spalling or low cycle fatigue (LCF) cracking. Figure 3
is a block diagram that illustrates the functionality of this module.
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Figure 3 Gear Model-Based Prognostics

A shipboard gearbox of sufficient importance to warrant a dedicated prognostic module would be
linked to a on-line data acquisition system capable of extracting vibration, speed and load data.
This real-time data would be processed by a pre-developed prognostic module residing on the
shipboard CBM system or on a remote server. The prognostic module encapsulates four primary
capabilities.

1) Containment of real world calibrated, physic-based algorithms for accumulating the material
damage of a gear as a function of operating parameters.

2) The ability to statistically examine past operating condition and extrapolate them into the
future or allow for a simulated future operating profile.

3) Containment of algorithms for processing the vibration data and extracting vibration features
that are most indicative of gear tooth cracking or pitting.

4) The ability to statistically calibrate the physic-based model results in the presence of a
diagnosis of gear wear or with failure rates or inspection results from similar gearboxes.

The output of the prognostic module would be the probability of failure, with confidence bounds,
for a specified time into the future.

This model uses American Gear Manufacturer's Association (AGMA) standards for calculation
of tooth root stress as a function of transmitted load however sophisticated FE modeling of gear
tooth contact could can been employed. The primary failure mode in the Penn State MDTB data
was tooth root cracking which is an LCF phenomena. The mean number of cycles to root crack
initiation is given in Eq. (1) which relates the LCF damage to localized true stress range.

NflL = 21.[ L (true) -ao(mean)]~ cc-5 .Ef'-7 (1)

NflL =the LCF life for the gear (L)
arL(true) =localized true plastic stess amplitude at a tooth root
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n = cyclic strain hardening exponent; c = fatigue ductility exponent
K = cyclic strength coefficient; Ef=- fatigue ductility coefficient

This tooth root stresses fully account for strain hardening and residual compressive stresses by
completely modeling the material's hysteresis loop. A Monte Carlo simulation was used to generate a
distribution on the time to crack initiation based on uncertainty in mechanical properties and operating
conditions. Some examples of this uncertainty include the load application factor, which is a flnction of
manufacturing quality and gear alignment; and the true root notch stress. Having developed a
distribution on number of cycles to crack initiation at a given load level, the next step is to find the
distribution on total damage level as a function of time.

The damage accumulated due to low-cycle fatigue at a particular time is based on a non-linear Miner's
rule Eq. (2). A damage level greater than or equal to 1 would represent an initiated root crack.

fn
Damage = [Nf1J (2)

Where: n = number of cycles experienced, rl = non-linear damage exponent; Nfl = Number cycles to
crack initiation

To be functional as a calibrated prognostic tool, the physics-based model must also consider crack
propagation so it can predict the time to gear tooth failure when a diagnostic tool discovers that a crack
has initiated. To address crack propagation, a fracture mechanics model was created. The fracture
mechanics package used was a 2-D version of Franc-XT. The 2-D analysis yielded the change in stress
intensity factor with respect to crack length.

The fundamental differential equation used for the rate of crack growth per cycle (Paris Law) is:

O=CAKi" (3)
agN

Where:
C, m = fiacture related empirical constants, a = crack length, N = cycle (Low or High)

The total probability of failure is the combination of two independent events; the initiation of a crack
and the propagation of that crack to failure. For independent events, the total probability is

PI.Il = PQi)* P(p) (4)

where:

P(p) = #Damage > 1 (5)
#MonteCarlo _ pts

Figure 4 shows a screen capture of the notional, plug 'n play prognostic module for gear tooth
failure prevention.
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Figure 4 Gearbox Prognostic Module

The layout of this module (Figure 4) is intended to illustrate the knowledge fusion hierarchy that
is "behind the scenes". The lower left plot shows three of the 25 vibration features as a function
of time. Increases in the normalized amplitude levels have been shown to be indicative of gear
tooth cracking [2]. The "Signal-based Prob. of Failure" number is based on the Dempster-Shafer
combination of these features [7]. On a parallel path, the raw data gets evaluated by the physical-
based prognostic model, which produces its own Prob. of Failure result called "Physics-based
Prob. of Failure". A second Dempster-Shafer knowledge fusion process was used to combine the
signal-based results with the Physics-based results. The "Actual MTTF" is generated based on
the signal information while the Expected MTTF is based on the operational profile (speed and
torque) from the physical model.

Actual and Expected MTTF have a higher purpose than just stating that a maintenance event
should occur sooner (or later) than expected. The rate of change between actual and expected
MTTF is a vital factor in maintenance optimization. Risk, defined as probability of failure
multiplied by consequential costs, is always evaluated under two scenarios; 1) what is the risk of
failure as a function of time if maintenance is performed in the present vs. 2) if it delayed until
some future time. The future probability of failure is performed by extrapolating past speed and
loading profile statistics over some future analysis time period.

Babbitted Journal Bearing: Large steam turbine babbitted bearings were identified as high-risk
item for the Navy. Therefor a generic steam turbine bearing prognostic module was developed for
a two axial groove or pressure bearing design with a tin-based babbitt atop a steel backing. The
module is applicable for bearings of approximately 8-10" in length and 12-16" in diameter.

The failure mode of interest for steam turbine bearings is fatigue failure of the babbitt material as
a result of fluid film pressure fluctuations [5]. The prognostic module developed would be used
as follows:
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1) A bearing prognostic module, initialized to specific application and design, would convert
data from at least 2 proximity probes near the bearing into rotor eccentricity as a function of
time.

2) Via the Reynolds equation and the short bearing model, the magnitude and location of the
max fluid pressure will be calculated from the eccentricity

3) Using compiled experimental data relating max. fluid pressure to babbitt life, the mean time
to failure (MTTF) with confidence bounds would be determined.

The Bearing Prognostic module is designed to accept two real-time rotor displacement
measurements. Processing of the prox. probe data stream yields the eccentricity of the localized
rotor motion as a function of time. The eccentricity or "orbit" of the rotor in the journal bearing
is an input to a simplification of the Reynolds Equation chosen for this module called the Short
Bearing Model. This model was chosen because for most steam turbine bearing designs the
Length/Width ratio allows this assumption to be valid.

The Short Bearing Model, which relates non-dimensional fluid pressure to eccentricity is given
by:

PD = -67 (DY(L + 1 .(ersin(O,)Xz2 -1)+ pa (6)

This is converted to dimensional pressure via:

R 2 *P (C JVD (7)

Where:

PN- Non Dimensional Pressure, L - Length of Bearing, D - Diameter ofBearing, er - Eccentricity
Ratio
OAp - Angular position, R- Bearing Radius, gi - Fluid Viscosity, z- Non Dimensional axial direction

The solution to the model ultimately yields the fluid pressure distribution as a function of rotor
displacement. A fluid pressure distribution is shown in Figure 5a. A sparse but significant set of
experimental results have correlated max fluid pressure to number of cycles to babbitt fatigue
failure [3]. This run-to-failure data taken from the EPRI Manual of Bearing Failure and Repair of
Powerplant Rotating Equipment [4] is shown in Figure 5b. Standard Normal distributions were
placed about the linear regression line to capture experimental uncertainty. Hence, with a given
fluid pressure, a Mean Time To Failure (MTTF) with confidence bounds can be found.
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Figure 5a,b Journal Fluid Pressure Distribution and Failure Curve as Function of Load

A simulation was performed were the journal bearing had a normal amount of eccentricity for a
period of time and then a rotor misalignment was simulated. The misalignment caused some high
fluid pressure fluctuations as shown in Figure 6.
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Figure 6 Maximum Pressure as a Function of Eccentricity

Like all the "prognostic" modules, the bearing module contains some components of anomaly
detection, diagnostic and prognostic reasoning inherent to its architecture.

In this module an anomalous event that affects bearing life would be rotor misalignment. The
model-based prognostic module continuously evaluates the remaining life of the bearing
regardless of" whether or not a misalignment diagnosis is made. However, the rate of" damage
accumulation increases dramatically when rotor misalignment is detected.

Figure 7 is a screen capture of" a plug 'n play module for the Steam Turbine Bearing Prognostic
Module. The real-time orbit of the rotor is shown in the upper left-hand corer along with the

raw proximity probe data. The "Bearing Model" is meant to collectively represent FF1
capability and the hydrodynamic model. 1 and 2 per rev, features are captured from the vibration

spectrum. The severity level (0-100) of" two conditions adversely affecting bearing life, rotor
unbalance and misalignment are evaluated based on the amplitude levels of the 1 and 2 per rev.
respectively. In the case illustrated, misalignment levels where mapped to rotor eccentricities.
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Given the rotor eccentricity and Eq. (7), the maximum fluid pressure can be found. Finally, a
probability of babbitt fatigue failure is found based on the number of cycles experienced and the
known distribution of number of cycles to failure given max. fluid pressure level. Like all
modules, a threshold level is placed on the difference between Actual and Expected Mean Time
To Failure to alert when maintenance action should be taken.

Max Fluid Pressure Probability of Failure

1

Tr (H-~r) Time (HosrsI)

Figure 7 Journal Bearing Plug 'n Play Prognostic Module

Open Systems Architecture: Open systems architecture (OSA) is a design methodology that
defines a set of standard publicly known interfaces for specific modules. This published interface
standard allows systems to be broken down into independent sub-modules that can be replaced by
another party's module as long as it meets the same non-propriety interface format. Each module
is viewed as a collection of similar tasks or functions at different levels of abstraction. Figure 8
shows a flow chart of a proposed OSA for a machinery prognostics system. This OSA model has
seven sub-components or modules: Human System Interface, Decision Reasoning, Prognostic
Processing, Diagnostic Processing, Signal and Feature Processing, Data Acquisition and Sensor.
Each module will have a standard input and output interface that enables communication between
modules. The hub of the wheel structure represents the communications medium between the
modules, which may be accomplished using popular Internet protocols such as TCP/IP or HTTP.
This means that modules do not need to reside on the same machine but may reside anywhere on
a local, wide area or worldwide network. Open systems architecture design is an essential part toa prognostiF's system design to allow maximum flexibility and upgrade ability of the system.
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Figure 8 - Data Flow within an Open System Architecture

The requirements of an Open System Architecture (OSA) for prognostic modules such as the
ones discussed herein will he further identified by incorporating current OSA formats such as
those provided by MIMOSA. Some of the prognostic output protocols that have been considered
are (as derived from MIMOSA): Status, State of Health, Rate of Change, Time to Action,
Problem Identification, Components Affected, Recommendations, Work Request, Confidence,
Remarks/Comments. A detailed discussion of OSAs can be found in [1].

Human System Interface: A proposed human system interface (HSI) concept for incorporating the
prognostic modules into a multi-framed, single document interface (SDI) is illustrated in Figure 9. This
approach will ensure that critical information is not obstructed or hidden from view by another window
of the application. Tab buttons can be utilized to view multiple pages of information with the simple
window and hot links will be incorporated to simplify navigation between pages.

The deck navigation frame allows the user to graphically locate compartments within the shipboard
platform. This flame has two panels associated with it, allowing the user to graphically pinpoint a
specific system or component within the ship. The left portion of the frame will provide a vertical
cross-sectional view of the shipboard platform while the fight portion of the frame will provide a
graphical layout of the selected deck level. The deck level layout will show all the relevant
compartments that a user may query. When a user selects the shipboard level and compartment, the
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equipment selection frame will then update to show all relevant equipment located in that selected
compartment. The colors of the deck and compartment level will be color coded to indicate the current
health of the system and components. A gray deck and compartment color may be used to indicate that
all machinery within that location is of good health and operating normally, while the color red may
indicate a system failure or alert message. A different color, maybe yellow, will be used to indicate a
system with a low remaining useful life (RUL) or degraded condition. Blue will be used to indicate a
selected region on the layout. If the item was originally red or yellow then the selected item will
contain hatch diagonal blue lines in order to still indicate the critical condition of the compartment and
deck level.

Deck Navigation
Frame

Equipment Information
and Navigation

Frame

Compartment
Navigation

Frame

Figure 9 General HSI Layout

The compartment navigation flame will allow the user to visually monitor the heath of all equipment
contained within a compartment. The user may then select a piece of equipment for further inspection.
The color-coding of the equipment will also have the same methodology as the deck and compartment
levels. Additional information may be displayed to the user as the mouse moves over a relevant deck,
compartment or component. When a user clicks on a piece of equipment within the compartment, the
equipment information and navigation frame will display additional information related to that specific
component

The equipment information and navigation frame allows the user retrieve information about a specific
system and sub-components. The top portion of this frame will contain a set of tab controls to view
different aspects and information about the system and sub-components. Six tab controls will be
utilized for Overview, Detail, Diagnostics, Prognostic, Manuals and Procedures of the system. The
"Overview" tab window will contain a picture of the system that will allow mouse-over information
and short-cut links to sub-component information. This window will also display the current status and
health of the system and sub-components. The current health panel will display the prognostic results
for each component with indicated degradation. The current status panel will display information about
the current operation configuration and output. The "Details" tab window will display current sensor
readings such as temperature, pressures and vibration levels. An image of the system will be displayed
in the top right-hand comer to allow the user to navigate between different sub-components. The
"Diagnostics" screen will display information about the system's sub-components and an overall health
rating for the system. The "Prognostics" window will display the RUL for each sub-component for the
current loading profile. This screen will also allow the user to input a future mission profile to
determine the RUL under different loading conditions of the system. The user will easily be able to
located schematics and detailed drawings using the "Manuals" tab and the "Procedures" tab will give
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the operator quick access to operational, emergency and maintenance procedures with a list style view
control. The results from the prognostics and diagnostics pages could incorporate a list of
recommendation and short cuts or hot links to emergency and maintenance procedures based on the
fault condition.

The Alert frame is meant to display important information to the user about critical alarms or abnormal
events that are occurring across the shipboard platform. Each shipboard system module connected to
this system will determine the information displayed in this panel. The alert information will be
displayed in a tabular fashion along with date and time information. Each alert message will contain a
short cut to allow the user to jump directly to the shipboard system in question by means of a double
clicking the message.

A sample layout for a shipboard HSI used for an OSA prognostics system module is illustrated Figure
10. The figure shows the main overview screen from an HSI demonstration system developed as part
of a Navy program on Prognostic Enhancements to Diagnostic Systems. A list view of shipboard
equipment may also be implemented for the deck and compartment navigation frames. This would
allow operators that are not familiar with the shipboard layout to located equipment based on name and
not location.

Figure 10 Prognostic Module 11S1 Demonstration Layout

Conclusions: A comprehensive prognostic capability for critical components and/or systems has
been presented that integrates existing technologies such advanced features extraction techniques
and empirical/physics-based modeling approaches. The demonstrated prognostic modules
utilized a probabilistic framework for identifying confidence bounds associated with specific
component time-to-failure or degradation predictions. The developed approach was also capable
of integrating component reliability and inspection results with reference to operations and
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maintenance. The significance of having the developed prognostic modules follow a standard
OSA format was highlighted with examples of current OSA considerations identified by
MIMOSA. Finally, a human system interface concept was presented for illustrating how
information from a complicated health management system could be presented to an end user.
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