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Abstract- Characteristic modes developed by from the discretization of the field equations. If
Garbacz, Harrington and Mautz have long been these matrices are not singular, then (1) can be
used in the analysis of radiation and scattering reduced to the solution of the standard eigen-
from conducting bodies and apertures. For their problem:
computation, it is necessary to solve an eigen-
system of the form At = A1B3. If the matrices Hx = )A with H = B-A (2)

(A, B) are Hermitian and B is positive definite,
the generalized eigenvalue problem can be accu- However, if A and B are Hermitian and B is

rately solved using the simultaneous diagonal- positive definite, the problem (1) can be solved

ization technique (SDT). Because of numerical with a higher degree of accuracy applying the si-

approximations and rounding sometimes it may multaneons diagonalizatior technique (SDT) to

happen that the matrices properties deteriorate the matrices (A, B) than the direct calculation

and the SDT procedure becomes inapplicable, of the inverse matrix B- 1 [2]. Although the

In this work a new technique, developed recently underlined properties are sometimes held of the

by Higham and Cheng is proposed as a method matrices issued in electromagnetic problems, un-

to solve these deteriorate cases. It is applied to fortunately the discretization performed by nu-

the computation of the characteristic modes for merical algorithms on the electromagnetic field

some scattering problems. Results are analyzed equations often causes the loss of these proper-

and discussed. ties. As a consequence, the SDT becomes in-
applicable. Recently, Higham and Cheng have
faced the above problem from a theoretical point
of view and they have proposed a technique that

1. Introduction allows to use the SDT even in presence of dis-
cretization errors. This method is based on the

The generalized eigenvalue problem: concept of nearest definite pair [3]. In this work,

we have applied Higham-Cheng results to evalu-
A =B (1) ation of the characteristic modes for the scatter-

is often encountered in computational electro- ing from conducting bodies. The paper is orga-
magnetics [1]. The solution of (1) depends on nized as follows: section II presents the basics on
properties of the matrices A and B resulting the theory of characteristic modes for conduct-
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ing bodies. Section III and IV illustrate the SDT Note that R and X are real selfadjoint operators
procedure for the resolution of the positive defi- and furthermore 1? is positive definite [5]. The
nite Hermitian generalized eigenproblem and its choice M = 7R reduces the complex operatorial
extension. In section V we show the numerical eigenproblem (4) to a real operatorial eigenprob-
results. Finally, in section VI, the conclusions. lem:

Xjk = Ak7Zjk (8)

The eigenfunctions Jk have been named char-
2. Theory of Characteristic Modes for acteristic modes [5]. They can be numerically
Conducting Bodies evaluated through the reduction of the opera-

tor equation (8) to a matrix equation using the
The characteristic modes have been intensively Method of Moment [5],[10]. For this aim the k-
used in the analysis of radiation and scatter- th modal current density on the metallic body
ing from conducting bodies and apertures [4]- is expanded in a set of N suitable subsectional
[13]. They are numerical entire basis functions basis functions !3,:
that in principle can be computed for any ob-
ject shape. Since these eigenfunctions include
the behavior of unknown current density flow- Jk = fI . (9)
ing on the metallic bodies and apertures, only n=1

a small number of them are required for a good where the In are unknown complex constants.
reconstruction of it. So, if available, character- Substitution of (9) into (8) and application of
istic modes would lead to a scattering or radia- the Galerkin method leads to a matrix equation
tion problem treatable with a classical Method of the form:
of Moment even in presence of a large number of Xlk = AkR~k (10)
objects [10]-[13]. In the case of scattering or ra-
diation from conducting bodies, these modes are where Ik is the column vector of the unknown

basically solutions of a generalized eigenproblem coefficients I,. Equation (10) is a generalized

involving the impedance operator Z, which re- eigensystem of the form (1) in which the eigen-

lates the surface current J on a conducting body values Ak and the eigenvectors _k approximate

to the tangential component of the incident elec- the eigenvalues and the eigenfunctions of the

tric field on it, i.e. [5]: equation (8). It follows by X" and 7? properties
that the matrices X and R are expected Her-

zi = Tan (3) mitian and furthermore R is expected positivedefinite. Consequently, in principle it is possible
One method to solve a functional equation of the to use the SDT for solving the eigensystem (1).
form (3) is to obtain a modal solution in terms But because of numerical approximation, the R
of eigenfunctions of Z . For this purpose, we matrix often becomes indefinite and the SDT al-
consider the operational eigenproblem: gorithm becomes inapplicable. In the following,

it will be shown that the use of the nearest def-
ZJk = VkMiJk (4) inite pair technique permits to employ the SDT

giving a significant improvement in the evalua-
in which M is a suitable weight operator and tion of the characteristic modes over the direct
vk = 1 + jAk. The operator Z can be uniquely inversion technique.
represented in the form:

Z = 7? + jX (5) 3. Resolution of the Positive Definite
Generalized Eigenproblem with the

where the operators R and X" are defined as: Simultaneous Diagonalization Technique

7R - + (6) The generalized eigenproblem where the matri-
2 ces A and B are Hermitian and in which one

Z.- Z* is positive definite plays an important role in
2j (7) matrix theory. If we assume, without loss of
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generality, that B is positive definite, the prob- definite, but sometimes it can be extended to the
lem (1) can be accurately solved by means of Hermitian pairs in which the B matrix is indef-
a method named simultaneous diagonalization inite. For this aim, the concept of definiteness
technique [2] as follows: Let U1 be an unitary has been restated referring directly to the ma-
matrix whose columns are an orthonormal set trix pair (A, B) rather than to a single matrix
of eigenvectors for B. Premultiplying and post- B. More in details, pair (A, B) having Crawford
multiplying (1) by U* and U 1, where the star number -y [15], denoted as:
denotes the complex conjugate transpose opera-
tion, and taking into account that: -y(A, B) = min ,/(ý*Ah)2 + (z*Bý) 2  (18)JJZJJ2=I

UUi = UUt = diag(l) (1)strictly positive has been named as definite and,

where diag(1) is the identity matrix, we obtain: when y = 0 the pair has been named as indefi-

!ý= Al3• (12) nite. Also, it is possible evaluate the definiteness
of a Hermitian pair (A, B) drawing its Field of

in which the matrices A, B and the vector p are Values F(A + jB) in the complex plane. The
of the form: field of values is defined as the set of all the val-

A= UtAU1 ues assumed by the Rayleigh quotients of the
S= UIX (13) pair [3]:

B = UVBUl = diag(p)
and in which diag(p) is the diagonal matrix formed F(A + jB) z*(A +jB)z z : 0 (19)

Z*Z
by eigenvalues of the B matrix. Next, we intro-duce thenonsinguar transfomatrion H:x, e The pair will be definite if and only if zero doesnot lie in F(A + jB), otherwise it will be indef-

H = diag(p- 2) (14) inite. A solution of (1) in which B is indefinite,

Using H in (12), we obtain: but the Crawford number -y of the pair (A, B) is
positive, has been given in [15] by means of the

AZ = ABz (15) Stewart's theorem [16]. This theorem ensured

where AL, ý and B are: the existence of an angle 0 E [0, 27r) that per-
mits to define, starting from a given pair (A, B)

A = H*AH with -y > 0, a new pair (A0, Be) in which B0 is
z = H- y (16) positive definite, as follows:

B= H*BH = dia9(1)

Finally, if we construct an unitary matrix U 2  AB = AcosO + Bsin0 (20)
whose columns are an orthonormal set of eigen- Bo = -Asin0 + BcosI

vectors for A, the matrix transformation T = For this new pair is now applicable the SDT.
U 1HU 2 permits simultaneously to reduce the The eigenvalues A of the old pair (A, B) and
matrices A, B to diagonal form: the eigenvalues \0 of the new pair (A0, B6 ) are

T*AT = diag(A) (17) simply related by:

T*BT = diag(1) A c0eos0 - sin0

resolving the eigenproblem (1). An efficient im- AosinO + cosO
plementation of the above procedure that uti-
lizes both the Cholesky factorization and the However, it may happen that the discretizationsymetrc Q alorihm s dscrbedin[14]. errors may affect the matrices in a way that a
symmetric QR algorithm is described in [1 pair (A, B) theoretically expected to be defi-

nite becomes indefinite in practice. As a con-
4. Extension of the Simultaneous sequence the SDT cannot be applied. For this
Diagonalization Technique last case it can be useful evaluate the nearest

definite pair (A + AA, B + AB) and attempt
The application of the procedure discussed in to resolve the problem (1) for this one. Else,
the previous section is not limited to the treat- assigned the indefinite Hermitian pair (A, B),
ment of Hermitian pairs (A, B) with B positive we must find the nearest Hermitian definite pair



235 ACES JOURNAL, VOL. 17, NO. 3, NOVEMBER 2002

(A + AA, B + AB), having a specified Crawford Y,

number -y = 6 > 0 according to the distance
13],[17]:

d6(A, 1) = min{lI[AA ABIn1 2 :12

-y(A +AA, B±+AB) = 6 (22) XC Dxr

and the angle 0 by means of which the nearest [b]
pair can be simultaneously diagonalized. This
problem has been recently solved by Higham and Figure 1: Geometry for scattering from circular,
Cheng by means of the following theorem [3]: elliptic and square metallic cylinders.

Higham-Cheng's Theorem: Let A, B E Cnxn I

be Hermitian and let C = A + jB and Ao = o.8

Acos(O) + Bsin(O). Let min(0<o <2r) Amax(Ap) °.

be attained at the angle 0 and let A0 have the 0.4

spectral decomposition: o.

0... ................. ...... . . ...

Ao = Qdiag(Ak)Q* with Yn 5 <... iY (23)
-0.2.. .. " .

If 0 E F(C) then: -0.4

d6(A, B) = + i (24) -.

If 0 ý F(C) then:

d6(A, B) = max(b + pi,0) (25)
Figure 2: Plot of the smaller normalized eigenvalues

In both cases, two sets of optimal perturbations for the TM, scattering from a circular cylinder of
in (22) are: radius a = • (Problem Size 128 x 128).

AA, = Qdiag(min(-6 + Ilk, 0))Q*cosO 1
AB, Qdiag(min(-6 + /

1 k, 0))Q*sinO these cases characteristic modes are known in
(26) analytical form [12]. In Fig.(1) are represented

and the geometries for both problems. In Fig.(2) is

AA 2 = -d 6(A, B)diag(1)cosO 1 reported the plot of the smaller eigenvalues of

AB 2 = -d6(A, B)diag(1)sinO (27) the R matrix obtained discretizing the EFIE for
the scattering due to a plane wave impinging
on a metallic circular cylinder with radius A

A detailed demonstration of this theorem can be Pulse basis functions and delta function test-
found in [3]. The most important consequence ing functions are used to create the matrix R
of the above results is that the SDT can be gen- [1]. Since only the properties of the matrices
eralized to the Hermitian pairs (A, B) having B above are considered here for the computation
matrix indefinite, of characteristic modes, it is not necessary to

specify the direction of the incident field. The
5. Numerical Results depicted eigenvalues are scaled to show the rel-

ative value only. This plot clearly shows that

In order to check the validity and accuracy of the the R matrix is indefinite, even if it is expected
foregoing procedure in the computation of char- definite because the properties of the operator
acteristic modes for conducting bodies, numeri- RZ. In Fig. (3) is plotted the field of values for
cal results for some cases are carried out. Firstly, the pair (X, R). Because the origin of the com-
characteristic modes have been computed for the plex plane is not contained in F(X + JR) this
TM, scattering from a perfectly conducting cir- pair is definite. In Figs.(4) and (5) are reported
cular cylinder and from an elliptic one, since for the plot of the smaller eigenvalues of the R ma-
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Figure 3: Field of Values for pair related to compu- Figure 4: Plot of the smaller normalized eigenvalues
tation of characteristic modes for circular cylinder, for the TM, scattering from an elliptic cylinder with

semi major axis a = A and semi minor axis b -

(Problem Size 180 × 180).
trix and the field of values F(X + jR) for the

pair obtained considering the scattering from a
metallic elliptic cylinder with semi major axis
a = A and semi minor axis b = \ by an inci-
dent plane wave. For this scattering problem we
have obtained both an indefinite matrix B and
an indefinite pair (X, R) as clearly depicted in
these figures. In Table (1) are shown the an-
alytical eigenvalues versus the numerical ones 15

for the previously analyzed scattering problems.
Numerical eigenvalues have been obtained using

both the Higham-Cheng procedure and the di-
rect inversion technique. Excellent agreement is
shown comparing the exact eigenvalues and the .- . . . .

20 -15 -10 -0 0 5 10 15 20 20 3D

numerical ones computed by means of the former
procedure while the eigenvalues obtained using Figure 5: Field of Values for pair related to compu-
the direct inversion technique are very inaccu- tation of characteristic modes for elliptic cylinder.
rate. As last case, consider the evaluation of
the characteristic modes for the scattering from
a metallic square cylinder of side a = A. In 6. Conclusions
Figs.(1) and (6) are reported the geometry for
the problem and its field of values, respectively. A technique developed by Higham and Cheng
As it is shown in Fig.(6), the matrix pair (X, R) for the treatment of the Hermitian generalized
for this case is definite because the field of val- eigenproblem based on the concept of nearest
ues does not contain the origin of the complex definite pair has been proposed for the compu-
plane. In Fig. (7) is shown the obtained current tation of the characteristic modes. Numerical re-
distribution on the cylinder by a plane wave im- sults for some scattering problems are presented.
pinging at an angle 00 = 0. The continuous line In all the cases, the outlined procedure, even
indicates the current computed by means of the if acting on very ill conditioned matrices, pro-
standard MoM while crosses indicate the solu- vides very accurate numerical results. Finally,
tion obtained using characteristic modes com- we point out that the application of the method
puted using the Higham-Cheng procedure. A is not limited to the presented cases being fruit-
very good agreement is clearly observed, fully applicable to a wide number of electromag-

netic problems which posses the discussed prop-
erties [18].
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SExact Solution Higham-Cheng Direct
(circular cylinder) Solution Inversion
cond(X)=1.29e+01
cond(R)=5.56e+17_________

-0.12609 -0.12609 -35.6120-32.1893j
25 -0.12609 -0.12609 -35.6120+32.1893j

1.07929 1.07921 49.1555
S0.20579 0.20572 14.8938+76.7077j

0.20579 0.20572 14.8938-76.7077j
Exact Solution Higharn-Cheng Direct

,5 (elliptic cylinder) Solution Inversion
cond(X)=3.22e+01

10 cond(R)=3.54e+18
-0.958287 -0.961337 -3.34497 +1.71189j
-0.143256 -0.143658 -0.987728-1.30952j
0.139654 0.137123 1.305403

0[ 0.454565 0.451928 -0.987728+1.30952j
o 0.831470 0.832260 -2.58841
-15 -10 -5 0 5 10 15 20 25

Table 1: Analytical vs. numerical eigenvalues.
Figure 6: Field of Values for pair related to com-
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