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ABSTRACT

The dc and microwave responses of the BaxSrpx (X,Y)yTijyO 3 family of ferroelectric
compounds with various substitutional additives X31, y 5+ are analyzed by combining the
random-field technique with the mean-field (Landau-Devonshire) theory of ferroelectricity,
along with a self-consistent computation of the dielectric constant of the host material in the
presence of the impurity fields. The fields in the material are assumed to arise from charge
compensation at the Ti+ sites, leading to permanent dipoles made up of the resulting positive
and negative ions separated by a few lattice constants. It is shown that whereas completely
random placement of positive and negative ions generates a Holtsmark distribution of electric
field, with infinite second moment and hence extremely large fluctuations in field strength,
the association of ionized impurities into permanent dipoles leads to much lower fluctuations
in field and a distribution with finite second moment, which makes a self-consistent dielectric
constant meaningful.

INTRODUCTION

The usefulness of ferroelectric materials in the design of electronic devices arises
from the ease with which their electrical characteristics, e.g., conductivity, dielectric
constant, optical birefringence, etc., can be controllably modified so as to produce a
desired functionality. A standard way of controllably modifying a material is to introduce
foreign elements into a host material at concentrations that are too low to change its
intrinsic chemical nature, but which modify its behavior at the macroscopic level. In
ferroelectrics, these modifications are usually associated with the presence of built-in
electric fields, which are generated by thermal ionization of the added impurity atoms.
This type of processing is well known in the semiconductor industry, where materials are
routinely "doped" to make them conductive and otherwise electrically active.

However, because semiconductors already contain large amounts of free, i.e.,
mobile, charge, it is normally assumed that there are no macroscopic fields inside them.
Because doping such materials with impurities creates ionized donor and acceptor centers
in addition to the free charge, it would seem that long-range fields should appear.
However, the free charge can move to screen out any such fields [1] over distances that
are larger than the Debye length in the bulk:

eFkT E
D ne 2 =120 cmat room temperature, (1)
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where n is the carrier density, E the dielectric constant. For n = 1012 cm-3 , which is a
lower limit on how low the free charge can be in most semiconductors, this gives lD = 1.2
gm, i.e., very small. Over these distances the fields can only create small potential
fluctuations, which modulate the bottom of the material conduction band to produce so-
called "bandtails", as shown long ago by Evan Kane [2] and Halperin and Lax [3]. In
contrast, insulating materials can have vanishingly small amounts of free charge in their
interiors, and hence can sustain long-range fields. Although these fields will vary
randomly in magnitude and direction, they can superimpose and become quite large. In
this paper we develop a statistical method to calculate the behavior of fields associated
with charged impurities in ferroelectrics, and use it to discuss the effect these fields have
on the host material's dielectric response.

FIELD PROBABILITY DISTRIBUTIONS

The appropriate description of random electric fields in an insulator is statistical,
since the added charge centers are located randomly throughout the material bulk. This
means that at any given point in the material we can assume that there is a probability
distribution for the field, i.e., that the field is a random variable. The usefulness of this
picture depends on what observable we plan to calculate. If the observables of interest
involve volume averages, these can be evaluated conveniently by invoking the ergodic
hypothesis, i.e., we can replace the volume average by an ensemble average. To proceed
beyond this point the probability distribution of the quantity being averaged is required.

We begin by calculating the probability distribution for electric fields generated
by one species of added impurity. If the impurity centers are uniformly distributed, then
the probability p, (2)that there is an impurity at position 3 is simply l/V, where V is the

host volume. To find the field distribution we use a method pioneered by Markov [4],
discussed first in the astronomy literature by Holtsmark [5] and then in the astrophysics
literature by Chandrasekhar [6], and finally in solid state by P. W. Anderson [7] to
discuss electron localization in disordered media and by Stoneham [8] to discuss optical
line shapes. First, we note that if the impurity positions 21, )2, 3 .... are random vector

variables with probability distributions Pi (i1), P2 (ý2), P3 (3).... and

f = f(i.ji 1 ,-i2 ,i 3 ,...) is some vector function of these variables and the position i of a

point in the solid, then f is a random variable with a probability density given by the

expression
N

P(f(3) = fo) = (8(fO - f(4121,I2,3.)) = " p,, (,)d~t,(fO -.(... ] P3 ,...)) (2)
n=l

In our specific case, f will be the field due to the random charges.

Using the exponential representation of the 8-function

e(X) je4. d q (3)
_0 (27E)3

132



we can write the following expression for the density P associated with the overall

probability that the electric field E1 due to the charged impurities has a value Eat the

point 2:

P(EI(2) = E)=v-2N frl"dxn exp[ii.{E - F1 (ski1,22,23,..)] d3q (4)
n -•(27C)

3

Uncorrelated Positive and Ne2ative Monopoles

Assume now that we put an equal number N of positive and negative charges
("donors" and "acceptors" in semiconductor language) into the material, so that it is
electrically neutral (charge-compensated). Let these charges be at locations
XDI ,XD2 ,XD3 ,..XA1,XA2 ,2A3..... with probability densities PDj (IDj), PAj (VAj]) that

are uniform and uncorrelated as asserted above, i.e., PDj (jýDj) = PAj (iAj) =1"

Then the function E1 (2ih i2,36 x3,...) has the form

N e e
EI (xlxDl,xD2.... XAI,XA2,....)=V I

S=11"ýj 1-X-AIý(5

N
= E(5-3Dj)-E(3-iAj)

j=1

where E(i) = e X is the electric field of a point charge and e is the relative
FIjI3

permittivity of the host material. Then Eq. (1) can be rewritten as follows:

P(E (q) = E)= fexp[i4./•] d 3q V-jexp[-i4-*E(2)]d) (V- 1exp[i4.! E(j)]d (6)

-0 (27c)

If the densities of donors and acceptors are nD = nA - n, we can write V = n/N. Using this
notation, we have that

(V-1fexp[-i4 . E0 (l-v- J{1 -exp[-i4. E(2)]}L~) (7)

This lets us write [9]

P(E1 (i) = fE) = Jexp[i4. kjexp[-2nReF(q)] d (8)

Now, the integral

ReF(4) = f{1-cos[4 -.•()]}j (9)
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reduces the function P to Holtsmark's distribution (see Ref. [5]) with a total density of
carriers 2n. Some manipulation gives

Re F(cj) = 4 (27t)3/2e3/21q1312 (10)
15

which implies a distribution of the form
Sd3q

P(E1 (ýi) = E) = Jexp[i•4. 2 -13/2] (11)
_•, (27r)'

where a = 8(27Z)3/2nd3/2 = 8.400ne3 / 2 is a scale factor with dimensions [field]3/2.
15

This reduces to the I D integral of Holtsmark

P(21 (E ) = E) = 21expl-ax3/2M3/2 sin xdv " (12)
21r~~ 0

which cannot be reduced further.

If the host material has a lattice constant a, we can write n = ca-3 , where c is the

impurity concentration (dimensionless). Then c = 8 .40 0 cý e--32 introduces a scaling

electric field Esc = e into the problem, in terms of which o = 8.400cE3/ 2 . Taking aEa2

= 4 A and e= 1000, which are typical values for ferroelectrics, we find that this field is
about 110 V/lpm, i.e., close to breakdown of the material.

Fully dipole-correlated charge distributions

Suppose now that every donor is spatially paired with an acceptor, i.e., is
physically separated from it by only a few lattice constants. The resulting pairs of charges
can then be treated as unit sources of random electric field, i. e., dipoles. At low carrier
concentrations (so that the dipoles are far apart) we can treat the fields of these dipoles as

we did the fields above. Now, however, the field 2(i) = e2 X is replaced by the field

of a dipole, i.e., a field of the form

=3(i. h) - x 2h (13)

where ii gives the direction of the dipole and po its strength. For a cubic crystal the
dipole direction can vary in 6 cubic directions for nearest neighbors and 8 for next nearest
neighbors. Let us ignore the discreteness of the possible orientations and suppose that
gpis a constant vector that can point in any direction, i.e., the Heisenberg problem. Then
we can replace the sum by an angular average:
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V1'fexp[-i E(i)W-4 V f I l dhexp[-i i )

- -Jt * (14)

=v-l f l-- 1 exp[l-4.i(.) j -d <S>di

where

= 3h(h.q) -q. (15)

Considerable manipulation eventually gives the result

P(4j ('i) =/E) = fexp[i4-- n41- 3q (16)
(27)3

where y=:-3--(j+ 2i 3 J r 5.89gp. Unlike the Holtsmark distribution, this

expression can be evaluated in closed form, leading eventually to the result

P(EI (3ý) = i 2 = +n 1 2 (17)
P(E1 ~ IT (E2 E) -______

which appears in the work of Ma [10]. Again, a scaling field enters into the problem: if
we take the dipole moment to equal ea, where a is the lattice constant, this field is once

e
more Esc = e where now we write fn =5.89cEsc.i~2'

F-a
P

.15

.125

* 1 Holtsmark

.075

. 05 Dipole
.025

x
1 2 3 4

Figure 1. Holtsmark and dipole distributions. The dipole curve is scaled by a factor of
1/100.
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Figure 1 shows a numerical plot of this function, together with the Holtsmark
distribution, for the same lattice constant and scaling field. Note that both these functions
are centered around zero, since they are vector distributions and there is no preferred
direction in the crystal. For convenience purposes the functions plotted are actually

27272PH (x) and 2 2 G2 PD (x), where x = E/3 since the Holtsmark function

2n 20 2PH (x) is a universal function in this coordinate. In contrast, the dipole function

212cy2PD (x) takes the form 2F where F is a function only of the(Xt2 + 172 +

concentration: F = 1.43 c'13. The dipole plot shown is for c = .05, on a scale reduced by a
factor of 100. Note that the Holtsmark distribution is much broader than the dipole
distribution, with a longer tail. This difference is a manifestation of the long range of the
Coulomb interaction, and in fact causes the Holtsmark distribution to have no second
moment - i.e., the fluctuations are so large that their mean square deviation from the
average field is infinite! In contrast, the dipole distribution has finite fluctuations,
although it, too, is somewhat badly behaved, having no moments higher than the second.

THERMODYNAMIC VARIABLES

Let us characterize the ferroelectric by using the Landau-Devonshire theory [11].
In this picture, the properties of the ferroelectric near the Curie temperature are
determined by its free energy, which is of the form

F =-E.+Ia(T)D2 +IhD4 +lcD6 (18)
2 4 6

where D is the displacement, E denotes an external electric field, and a, b, and c are
material parameters. We will assume here that (1) the material undergoes a second-order
phase transition at TC, which requires that c = 0, b > 0, and (2) that only a depends on
temperature, specifically that a(T) = x(T - TC ), where Tc is the Curie temperature. Then

the relation between the displacement f) and the electric field t is found by minimizing
the free energy with respect to the vector b :

dF = -Ei +[a(T)+bD2IDi =0 (19)

dDi

Normally we would just solve this equation for b, but here the field E is a random
variable so that a different approach is needed. If we assume that the crystal is isotropic,
then the vectors D and E are always parallel and D = Dh where h is the direction of

the field t. Then

b = I t I D E1 (20)
a+bD2 a+bD2 a+bD2

where E is the magnitude of E. This implies that
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E 2 =(a+bD2)YD2 (21)

In the presence of an applied field a, the average displacement is given by

E d 3E
< Di >= fDi (E)P( - kEa)d 3 E = f-Di (E) (22)

where Ef = n = 5 .89 -e2 Jc is the "width" of the field fluctuation distribution. Note

that the distribution is now centered around the deterministic external field Ea.

Dielectric constant

Let us introduce the variable x = D 2 . Then E 2 = x(a + bx)2 and D = E.
a + bx

If the z - axis points along the applied field and we write d3 E = 2itE2 dEdA, where
S= cos0 depends on the angle between the integration field and the applied field, the

integral becomes

S 01a+bx EI2E+E2 +E2 2

S(23)
2 Ef - E3 dE 1 

fd3

=- J -- j
t 0 a+bX- l(Ef +E2 +E 2 _2EEat;

For small external fields we can expand the angular integrand in a power series. Then the
angular integrations are trivial, and we end up with

E Ea+ 8E(5E2+3E 2E 3)< D->= f xf E 2 2"E3E -+--- • fa3+""
ic 0 a+bx 3 Ef+E 2 5(E2+E2) a5{a (24)

= cEa + PE3 +...

where F and P are the dielectric constant and tunability of the material. Near the Curieb3/2 Ti
point we can set a = 0, which simplifies the relation between E and x to E = bx . This
in turn simplifies the integrals, and we find that
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e= 14 E-2/3b-1/3 _14 E-8/30l/ 3  (25)

27 f 729 f

Self-consistency

In the spirit of mean-field theory we now specify that the dielectric constant used
to determine the field fluctuation width Ef be the same as the one we calculate from the

macroscopic theory, i.e., Ef = 5 .89  e2 )c. At the Curie temperature, however, we

know from the previous section that p = 14 , from which we obtain

27 Elb)

= 1 1.36ec Solving this for Ef gives Ef 14 66 ec )b. Then
ba2 fTc f = 59

1.aJ " .04j) j 2 i.e., the peak inE is _c- 2Since the

fluctuation width is affected by the external field Ea, calculating the tunability requires

some care. If F = c o(Ef )+ f3(Ef )E2, we apply self-consistency in the following form:

(Ef)Ef =5.89 c Co=>(Ef)_ (26)

Writing the width as E E powes o 2.
Ef = 1J-0 and equating powers of Ea gives a zero-order

equation

so(EfO)- CO (27)
Efo

and a first-order equation

f- (28)
Co + En' E f0 O

If e = eo(Ef )+ O(Ef 2,then

x(Efo)=-X --- =31(EfO)= 14 -8/3 /3 (29)

fo

At low concentrations we find that the tunability is , c- 8 , i.e., a very strong function of c.
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Numerical Results

In order to deal with finite temperatures we must allow a to be nonzero, which

complicates the analysis. Making the integration variable change E 2 = x(a + bx) 2 and

D = E leads to the following expression for the average displacement:
a + bx

2Ef oo 3/ 2  3
< D>=<h a.' D>=-- 2 x11 (a +bx)' (a +3bx) dx

C 0

-1(E2 +E2 +x(a+bx)2 2Eax12[a+bx])2 (30a)

The angular integral can be carried out easily, but it leads to an awkward expression.
Again it is clear that < D > vanishes as Ea - 0. It is possible to modify the theory
slightly to obtain the behavior of the material below the Curie temperature as well, from
the integral

2E f,,< D >= - fx/ 2(-lal+bx)3 (Hal+3bx)dx

Sjal/b

44 (30b)
-1 (E2 +E2 + x(-IaI + bx) 2 -2E axl/2 [lal + bx])

3 D, RtC/cm2

2.5

T- Tc-10 -5 5 i0 15 20

Figure 2. Spontaneous displacement versus temperature for BaSrTiO3 with +3 and +5
ions added. Impurity concentrations: (a) 0.0001, (b) 0.001, (c) 0.01, and (d) 0.1.
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Numerical evaluation of < D > leads to the curves shown in Fig. 2. We find the

low-field dielectric constant by linearizing in E,, which yields:

8Ef Ix3 / 2 (a+bx)3 (a+3bx)dx T > TC (31a)

0 E2 +x(a+bx)23

8Ey •o ±3=_a ,,) - + 3hx)dx
- f (-al b) 3 (-al , T<TC (31b)

31Ef 2 2 3(

40000

30000

20000

d T, K
250 300 350 400

Figure 3. Dielectric constants vs. temperature for dipole-doped BaSrTiO 3.
Concentrations: (a) 0.005 , (b) 0.006, (c) .007, (d) .008.
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Self-consistency was imposed numerically on these functions to obtain the curves shown
in Fig. 3. The results are within an order of magnitude of what we typically observed in
experiments. However, these theoretical curves do not predict the experimentally
observed shift in the Curie temperature with concentration [12].

CONCLUSIONS

In light of the crudeness of this theory, it is unlikely that it will be very predictive
when applied to real (Ba•Srl,)(X,Y)Ti0 3 systems, for a number of reasons: the actual
phase transitions in these materials are first order, they are ceramics, etc. Including these
phenomena will require at a minimum the use of a version of the Landau-Devonshire
theory with c •0, making the analysis more complex.

10000
0

0

Log jo F(Tc)

1000 0
0

0.01 0.1

Log 1o [C(Y,Ta) / C(B-site)]

Figure 4. Peak dielectric constant vs. concentration. A least-squares fit gives

Logl0 E(TC)= 2.1 -. 92Log( cy'
CB-site
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As an example of the disagreement between theory and experiment, Fig. 4 shows
the concentration dependence of the dielectric constant peak for members of the material
set (BaSrj_,)(Y,Ta)yTi1.yO3. In contrast to the slope of-2 predicted by theory, a slope
close to -1 is observed [13]. It is worth noting that all these materials had different grain
sizes, and that the Curie temperature was different for every data point shown. This
suggests that the correct dependence will only be derived when the theory can predict
concentration-induced changes in Tc as well. We hope to explore this issue in a future
publication.
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