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Abstract. We have calculated excitonic Bloch states in a quantum well with a two-dimensional (2D)
periodic potential. For the potential parameters used the two lowest states can be well described in
the tight-binding approach while the higher states represent free excitons affected by the periodic
potential. The redistribution of oscillator strengths for bound-like and free-like excitons with
varying the period has been also analyzed.

The resonant optical reflection from a lateral array of quantum dots was calculated in [ ]
for particular limiting cases, namely, for short-period structures or in the constant-field
approximation. Analytical results for arbitrary relation between the lateral period a and the
light wavelength as well as between the exciton radiative and nonradiative damping rates
have been presented recently in [ ]. The theories [ , ] are derived neglecting the overlap
of the exciton envelope functions excited at different dots. In the present work we extend
the theory allowing an exciton to tunnel coherently from one potential minimum to another.

We consider a quantum well (QW) with a periodic two-dimensional (2D) potential
V(x, y) = V(x + a, y) = V(x, y + a) acting at an exciton as at a single particle and
making no effect on the exciton internal state, i.e. x, y are the in-plane coordinates of the
exciton center-of-mass. For simplicity, we assume the potential V(x, y) to have the point
symmetry of a quadrate: V(x, y) - V(±x, ±y) - V(y, x). Due to the potential V(x, y)
the exciton energy spectrum is transformed from the parabolic dispersion Eexc (kx, ky) =

h2 (k2 + k2)/(2M) in an ideal QW with V -_ 0 into a series of 2D minibranches (M is the
exciton in-plane translational effective mass).

Under normal incidence of the light only the F1 excitonic states with kx = ky = 0 are
excited. We enumerate these states by the index v. The corresponding envelope functions,
ip,' (x, y), of the exciton translational motion are periodic and invariant under all quadratic
symmetry operations. They can be expanded in the Fourier series

1 - F27r]
iVfr(x,y)= -i ) cImexpi -(lx +my)I , (1)a hnj

where 1, m are integers 0, ±1 ... We choose the normalization condition fJ0 IV 12 dxdy - 1,
where Q0 is the unit cell, say the area -a/2 < x, y < a/2. Thus, the expansion coefficients
cim satisfy the condition Em,n IClm 12 = 1, whence

Ch Cm c7* -=V • (2)
lm

Let us consider a pair of integers 1, m as a two-component vector and denote the star
of the vector (1, m) as /. The star contains the vectors (±1, ±m) and (±m, ±1). For
I :A m :A 0 the star consists of eight vectors, otherwise it has four different vectors (if
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I= rn : 0 or I = 0, m :A 0 or I :A 0, m = 0) and one vector in the particular case
= m = 0. Note that, for the F, states, the coefficients Chin in Eq. (1) with 1, m belonging

to the same star coincide: crn = cý. In the method of plane waves defined by Eq. (1) the
Schr6dinger equation reads

- ( /32 - E cý + L cf L Vlm,/fin = 0, (3)

Vjin 1 = V(X, y) cos 2 Ia [(,)x+(mn m)yl dxdy,a2•,n = ~ I ao

where /!2 = 12 + m2 , E is the energy referred to the bottom of the exciton band in an ideal
QW. Now we define the lateral potential as a periodic array of disks, namely,

V(x, y) = Y v(x - la, y- ma) , (4)
Im

V (, Y V P) -- v0 , if p < R
v~xy)=~p) 0, if p > R ,

where p = ,l + y2 . Then one has

Vlin,/fm = -VR J1 (27r(1' -- /)2 + (,' - m) 2 R/a) (5)
a V/-(I -/-) 2 ++([' - m) 2

where J] (t) is the Bessel function.
For the sake of convenience we introduce the dimensionless variables

E V R h2  27r23 r2
s= - ,uo=- , /t=--, where EO=- - (6)

E a 2M R '(6

and the coefficients
C/ = n,•c3, (7)

where n1! is the number of vectors in the star `8. Then we can rewrite Eq. (3) in the
dimensionless form as

(P2/32 _ 8)C1 - uo uw u c'C = 0, (8)
,f!

u =,- • Vlm,1'inf•

VOI3/3 (1, n) E /3
(1', MI) E 8

The oscillator strength for the exciton v is proportional to

= [ L V, ̀(x, ]2 =dc (]- )]2 [= )] 2[(9)
f a 0 1rx ~dd 0,0j 0,0j (9)
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Fig. 1. The energy E, (a) and the oscillator strength f, (b) of the exciton in a 2D superlattice as
a function of the ratio R/a. The calculation is performed for uO = vo/Eo 0.5; a value of R is
being kept fixed while the lateral period a is a variable. The index v enumerates the exciton Bloch
states with k. = ky = 0; curve 5 in (b) represents the sum of f, over the four lowest energy states.
Dotted curves are obtained by using the tight-binding approximation, see Eq. (10).

The sum of oscillator strengths is conserved because according to (2) one has Y f% = 1.
Figures 1 and 2 represent calculations of E, and f, (v = 1 - 4) performed for values

u0 = 0.5 and uO = 1. The sum of f, over v = 1 - 4 is represented by curves 5 in Figs. lb
and 2b. Since this sum is close to 1 in the whole range of R/a from 0 up to 0.5, we conclude
that the oscillator strengths for excitons with v > 4 is negligible.

For large enough periods, the exciton states v = 1, 2 with negative values of E can be
approximated by the tight-binding functions

f , (Xy) = )7 ýp, (x - la, y - ma) ,
Im

where op, (x, y) are the normalized excitonic functions localized at a single potential v (p)
and characterized by the uniaxial symmetry. In the tight-binding approximation the oscil-
lator strength is given by

a2= -(f ýv(x, y)dxdy) . (10)

Dotted curves in Figs. l b and 2b are calculated by using Eq. (10). Another important result
obtained is that for large a, i.e. for small ratios R/a, the oscillator strength for the exciton
v = 3 is prevailing or, in other words, the state v = 3 is close to the free exciton state in
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Fig. 2. The same as Fig. 1 but for u0 = 1.

an ideal QW which is described by Eq. (1) with coo = 1, ch,, = 0 if I : 0, m : 0 and,
therefore, f = 1. With increasing R/a the oscillator strength is redistributed in favour of
the bound-like states v = 1 and v = 2. This redistribution can be used for a qualitative
analysis of "stealing oscillator strength" from neutral excitons X to charged excitons X-
mentioned by Kheng et al. [ ] (as far as we ignore that the electrons filling the conduction
band are not distributed periodically in the interface plane).

The states 3 and 4 in Fig. 2 clearly demonstrate the effect of anticrossing near the point
R/a = 0.25. In this region the oscillator strengths f3 and f4 are linear functions of R/a
with the sum f3 + f4 being constant, at the point R/a ; 0.26 they become equal and the
energy difference E 4 - E 3 exhibits a minimum, all these properties being fingerprints of
the anticrossing effect.
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