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Abstract. Edge states and their transport in a quantum wire exposed to a perpendicular non-
homogeneous magnetic field are investigated. Systems are studied where the magnetic field exhibits
a discontinuous jump in the transverse direction. The energy spectra and wave functions of these
systems, the corresponding group velocities along the interface and the particle average positions
normal to the interface are calculated. The resistance of the quantum wire is obtained both in the
ballistic and in the diffusive regimes as a function of the Fermi energy and of the homogeneous
background magnetic field.

Introduction

Investigations of semiconductor nanosystems is frequently connected with the use of mag-
netic fields. In the last several years a complex situation of nanosystems in a non-uniform
magnetic field has attracted considerable interest [ ]. Different experimental groups have
succeeded in realizing such systems [ ] by depositing patterned gates of superconducting or
ferromagnetic materials on top of the heterostructure. An alternative approach to produce
non-homogeneous magnetic fields is by varying the topography of an electron gas [ ].

We investigate the magnetic edge states and their transport properties (in the ballistic
and diffusive regimes) in nanosystems exposed to a normal inhomogeneous magnetic field.
Structures are studied where the magnetic field changes its sign, strength, and both sign and
strength at the magnetic interface. Such a system was recently realized experimentally [ ]
by depositing a ferromagnetic stripe on top of the electron gas and by applying a background
magnetic field normal to the electron gas. Varying the background field results in all the
above situations.

1. Approach

Consider a one-dimensional electron channel along the y-direction formed by the parabolic
confining potential V(x) and exposed to a normal non-homogeneous magnetic field
B (x) = B 1 and B,(x) = -B 2 respectively on the left and the right hand side of the mag-
netic interface at x = 0. This system is placed in a homogeneous background magnetic field
B, (x) = Bb. In any finite region along the x-direction where the magnetic field is uniform,
the system is described by the single particle Hamiltonian H = (j3 + e/cA)2 /2m* + V(x)
where m* is the particle effective mass, V(x) = m*wo2x 2 /2, wo is the confining poten-

tial strength. We choose for the vector potential the Landau gauge A = (0, Bx, 0) and
Schr6dinger equation can be separated with the ansatz TP (x, y) = eiky fp (x), where i is
an eigenstate of the one-dimensional problem (d2 /dx 2 + v + 1/2 - (x - X(k))2/4)1 (x -
X(k)) = 0. Here we introduce the following notations: v + 1/2 = (8-h 2 k2 /2mB)/hw,* is

the particle transverse energy in units of wo* = ý2 + W2 B is the cyclotron frequency,

492



TN.07p 493

4~ ~ -. "

. . ........ 
.......

5,,'N" - - - " / k //-2

C1 2,.O 5-
-2 0 2 4-4 -2 0 2 4Wave number k(1/1*) Wave number k(1//*)

Fig. 1. The energy spectrum for the 8 lowest bands (left figure) and the particle average position
corresponding to the 5 lowest energy bands (rigt figure).

e and k are the energy and the momentum. The coordinate of the center of orbital rotation
is X(k) = kl*cOB/co* in units of the length scale 1" = 1Fih/(rm*(o*). In the longitudinal
direction the electron acquires a new field dependent mass mB = mn*w*2/co20. The solutions
of the above equation are the parabolic cylindrical functions D, (x).

In the non-homogeneous magnetic field case v, X are different on the left and right hand
side of the magnetic interface and we construct the wave function as V1/1,1,i2 (XI X1, X2) =-
D,, (•v/2(Xl (k) - x)), if x < 0 and lplP(x, X1, X2) =- D12 (N/2(x -- X2(k))), if x > 0.
Indices 1, 2 refer to the values of quantities for which (o* = ýW + Wo2istknwhB=

B1, B2, respectively. Matching of this wave function and its derivative at x = 0 leads to the
dispersion equation d ln(D,, (x - X1 (k))/dx I,=-O = d ln(Dv2 (-x + X2 (k))/dx l,=+O.
By solving this equation we obtain the energy and wave functions of the magnetic edge
states, which are the solution of the one-dimensional problem with the effective potential

Ve.f (x, 0) = rno)*Z(x -- X1 (k))2/2 + r1'k2/2mrn, if x < 0 and Vef (x, k) = mwo2Z(x --
Xz(k))2/2 + hlkZ/2m 12' if X > 0. The shape of Vef (x, k) depends strongly on the sign
of k and on the magnetic field profile.

2. Spectrum

For brevity here we restrict ourselves by consideration only asymmetric system: B1 i
B32, sign (B1/B2) = -L1 In this case Veif (x, k) exhibits a pronounced asymmetry both as
a function of k and x. For negative values of k, Very (x, k) is a triangular-like asymmetric
well with a minimum of hl2kZ/2m* at x = 0. For positive values of k, Vff (x, k) is a
double well with different minima h ,k /2mB' and h k 0/2mB2 at the positions x = +X1 (k)
and x = - X2 (k), respectively. The triangular like barrier between the wells has again the
height ,2 k2/2m* at x = 0. Thus the confining potential together with the non-homogeneous
magnetic field induces three effective masses (mn* for negative and mn,,, mn•2 for positive
values of k) in the system. The spectrum consists of alternating symmetrical and anti-
symmetrical terms and is described by a discrete quantum number n = 0, 1, 2, .... and the
momentum k along the wire (Fig. 1). For negative values of k, the spectrum corresponds
to snake orbits with free-like motion and with mass mn* along the y-direction. These states
are effectively localized in the vicinity of the magnetic interface in the region where the
magnetic field is smaller. The group velocity is approximately linear and the particle average
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Fig. 2. The Fermi energy dependence of the conductance in the ballistic regime (left figure) and

of the conductivity, in units of cro = e2 r/(~rmWl), in the diffusive regime (right figure).

position •n is approximately independent of the wave number (Fig. 1). For positive k the

spectrum characterizes the hybrid states. For some positive value of k the group velocity

vn and the particle average position •, start to oscillate as a function of the wave number

and the particle tunnels periodically from the left to the right side of the quantum wire and

vice versa. At k -- * +00 all states tend to be localized in the region where the magnetic

field is large and the well of the effective potential is lower.

3. Transport

We calculate the zero temperature two terminal magneto-conductance for a perfect conduc-

tor using the Btittiker formula []1. From Fig. 2 it is seen that the conductance, in the ballistic

regime for different magnetic field profiles, exhibits stepwise variations as a function of the

Fermi energy. For a given energy and confining potential strength, the conductance in the

non-homogeneous magnetic field is nearly twice that for the homogeneous field case. The

conductance decreases when going from the profile B1 = -3B 2 to the profiles B1 = -B 2 ,

and 
B1 

= 
+3B

2
.

The conductivity in the diffusive regime is calculated in the relaxation time approxima-

tion. We obtain UrID = 2e 2 /h r (EF) >3 I v n(k)IKL> in the zero temperature limit, r is the

momentum relaxation time. For the profiles B1 = 3B2 (see Fig. 2) and B1 = +3B 2 the

conductivity due to states with negative velocities (dashed curves) is larger than that due to

states with positive velocities (dotted curves). In the case when the magnetic field changes

its sign, the states with negative velocities are the snake states, which are always faster

than the states with positive velocities which are related to the hybrid states. In the case of

B1 = +3B 2 all the states are hybrid states, however, the contribution to the conductivity

of the states with negative velocities is larger because these states have the small mass mb,

and large velocity vt. For both v fo > 0 and v < 0 parts, the conductivity has an oscillating

structure as a function of the Fermi energy which is due to a divergence of the density of

states at the bottom of the w (k) band. However, the contributions due to states with vn > 0

exhibit an additional structure related to the oscillations of the group velocity as a function

of k. This structure is more pronounced in the case of B1 = - 3B2 , the conductivity has

additional distinct minima that reflect the tunneling effect discussed above.

The magneto-resistance 
in the ballistic regime exhibits stepwise variations as a function

of the background magnetic field Bb. In the diffusive regime the resistance exhibits small
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peaks as a function of Bb that are associated with the magnetic depopulation effect and that
are on top of a positive magneto-resistance background, which increases with Bb.

4. Summary

We developed a theory for the non-homogeneous magnetic field induced edge states and
their transport in a quantum wire. We calculated rigorously the spectrum of these systems,
the corresponding group velocities along the magnetic interface and the particle average
position normal to the magnetic interface. Exploiting these results, we calculated the
conductance and the conductivity of the quantum wire in the ballistic and diffusive regimes.
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