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Possible experiment on quantum Bayes theorem

Alexander N. Korotkov

Dept. of Electrical Engineering, University of California, Riverside, CA 92521 and
Nuclear Physics Institute, Moscow State University, Moscow 119899

Abstract. We propose a solid-state experiment to study the process of continuous quantum mea-
surement of a qubit state. The experiment would verify that the evolution of a qubit during the
measurement is governed by the information obtained from the detector (Quantum Bayes Theo-
rem). In particular, it can show that an individual qubit remains coherent during the measurement,
in contrast to decoherence for the ensemble of qubits. The experiment can be carried out using
quantum dots, single-electron transistors, or SQUIDs.

The problem of quantum measurement (wavefunction collapse) remains controversial
for over seventy years. The interest to the problem is renewed nowadays because of its
direct relation to quantum computing [1] and also because the progress in experimental
techniques makes it now possible to resolve some of the controversial issues, which were
discussed earlier only from the philosophical or mathematical points of view. One of such
issues is the continuous measurement of a quantum system.

The success of the theory describing interaction of a quantum object with environment
[2] has lead to an opinion common nowadays that the collapse postulate is a needless part
of the quantum mechanics and can be derived from the Schr6dinger equation tracing out
the detector degrees of freedom. Then the measurement process is described by gradual
decoherence of the measured object. Since the procedure requires ensemble averaging,
the "modern philosophy" of quantum mechanics says that only ensemble-averaged quan-
tities make sense while the discussion of the evolution of an individual quantum system
is meaningless. This claim sharply contradicts, however, the point of view of "old" text-
books. Moreover, the modern approach cannot actually reproduce the "orthodox" collapse
postulate, but only its ensemble-averaged version. The controversy has acquired a practi-
cal aspect since in the proposed solid-state quantum computers the qubit measurement is
necessarily continuous (not instantaneous).

Recently developed Bayesian formalism [3] (for earlier somewhat similar theories see,
e.g. [4]) reconciles the modern and orthodox approaches and allows us to describe the
continuous measurement of an individual qubit. It shows that if the detector is good enough
(basically, its sensitivity should be quantum-limited), then the qubit remains coherent (in a
pure state) during the process of measurement, while the gradual decoherence claimed by
the modern approach is just a result of averaging over the ensemble of measurement results.
The Bayesian formalism can be applied for the realization of continuous quantum feedback
control of a qubit and qubit purification, that is impossible using the ensemble-averaged
formalism.

Since the issue remains controversial, it is important to show experimentally that the
individual qubit stays coherent during measurement, in contrast to the claim of the modern
approach. This paper describes such an experiment which can be realized at the present-
day level of technology (for discussion of more direct experiments which, however, are too
difficult for realization, see Ref. [3]).
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Fig. 1. Schematic of two-detector correlation experiment using Cooper-pair box and two single-
electron transistors.

Within the Bayesian formalism the evolution of the density matrix p of the measured
qubit (two-level system with the tunneling strength H and energy asymmetry 8) is described
by equations

/1 I= -2HImp 1 2 + (2AI/S)PllP22[I(t) - 101, (1)

12 = 18P12 + iH(pIl - P22) - (AI/S) (Pll - P22)[1(t) - 101 P12 - Y P12, (2)

where I(t) is the continuous detector output (we assume current), AI = It - 12 is the
difference between two average currents corresponding to qubit states 11) and 12), 10 -
(I, + 12)/2 >> IA11, S is the output detector noise, and y is the decoherence rate due to
detector nonideality (for example, y = 0 for quantum point contact), while the ensemble-
averaged decoherence is F = y + (AI) 2 /4S (the detector ideality can be characterized by
the parameter l -_ 1 - y/ F).

The idea of the experiment is to use two detectors (A and B) connected to the same
qubit (Fig. 1). The detectors are switched on for short periods of time by two shifted in time
voltage pulses (one for each detector) with durations rA and TB, supplied from the outside.
The output signal from the detector A is the total charge QA = f.JA IA (t) dt passed during

the measurement period. Similarly, the output from the detector B is QB = f±. T
B IB (t) dt,

where T is the time shift between pulses. If the measurement by the detector A changes the
qubit density matrix, it will affect the result of measurement B. Repeating the experiment
many times (with the same initial qubit state) we can obtain the probability distribution
P(QA, QBIT) of different outcomes, which contains the information about the effect of
the quantum measurement on the qubit density matrix.

Figure 1 shows the realization of the experiment using single-electron transistors as
detectors. Qubit is realized by the Cooper-pair box so that the electric charge of the central
island can be in coherent combination of two discrete charge states. Another similar setup
is two quantum point contacts measuring the charge state of a double-quantum-dot qubit.
One more setup is the 3-SQUID experiment in which the qubit is realized by one SQUID
while two other SQUIDs are in the detecting regime.

The ensemble-averaged formalism implies the absence of correlations between p (t) and
I (t), so the average result of the second measurement QB (QA, T) =fQB P (QA, QB IT) d QB
should not depend on QA. The Bayesian formalism (1)-(2) makes the different prediction:
QB does depend on QA.
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For simplicity let us assume symmetric qubit, e = 0, which is initially in the ground
state, p1 I = P22 = P12 = 0.5, and also assume relatively strong coupling between the qubit
and detectors, (AIA) 2 /HSA >> 1, (AIB) 2 /HSB >> 1 (subscripts A and B correspond
to two detectors), so that we can neglect the qubit evolution due to finite H during the
measurement periods TA and TB, which are assumed to be on the order of SA,B/(AIA,B) 2 .

Then from Eqs. (1)-(2) it follows that the first measurement only "partially" localizes the
qubit state and after obtaining the result QA from the first measurement the qubit density
matrix is

PII(TA)-P22(TA)=tanh[[(QA-TAI2A)2W(QA--TAIA)2]/2SAA], (3)

P12(TA) = [PI (TA) P22(TA)1/ 2 exp(-YAT-A). (4)

Here Eq. (3) is the direct consequence of the Bayes formula, so this result can be called
"Quantum Bayes Theorem" [5]. The qubit performs the free evolution during the time
T - TA between measurements (here we neglect TA << T) and the average result of the
second measurement QB = TB (2B + Pll(T)AIB) depends on QA in the following way
(Fig. 2a):

6B = (H/Q)tanh [[(QA - TAI2A) 2
- (QA - TAI1A)2] /2SATA]

x cos[QT - arcsin(yf/4H)] exp(-yfT/2), (5)

where 6B - (QB - TBIOB)/TBAIB, yf is the dephasing with both detectors switched

off, and Q = (4H 2 _ Y2/4)1/ 2 is the frequency of quantum oscillations. Notice that 6B

changes sign together with the sign of QA - rAIOA, while the phase of oscillations is a
piece-constant function of QA.

The dependence becomes quite different if the 7r/2 pulse is applied to the qubit im-
mediately after the first measurement, that multiplies P12(TA) given by Eq. (4) by the
imaginary unit. In this case (Fig. 2b) 6B = A sin(QT + arcsin z/A) exp(-yfr/ 2 ), where

A = [(z 2 + y2 
- yz'f/2H)/(1 - 2'/16H 2)] 1/2, while z = pll(rA) - 1/2 and y =

Imp] 2(TA + 0) = Repl2(-A - 0) are given by Eqs. (3) and (4). This expression consider-
ably simplifies for weak dephasing, YA TA <K 1 and y/f << H, when

1 2/fT
B= - sin[QT + arcsin(2pll (TA) - 1) exp(- ). (6)

2 2

In contrast to Eq. (5), now the phase of oscillations of6B (T) depends on the result QA
of the first measurement, while the amplitude is maximum possible and independent of
QA. This fact is very important since it proves that after the first measurement (by an ideal
detector) the qubit remains in the pure state for any result QA. This state depends on QA
and is not one of the localized states as somebody could naively expect.

In a realistic experimental situation the assumption of strong coupling with detectors
may be inapplicable. In this case the full probability distribution P(QA, QB IT) as well
as the dependence QB (QA, T) should be calculated numerically using Eqs. (1)-(2). The
results of these calculations for (AIA) 2 /HSA = (AIB) 2/HSB = 1 are shown in Figs. 2c
and 2d. Weak coupling as well as the nonideality of the detectors decrease the correlation
between the results of two measurements, however, for moderate values of the coupling
and nonideality the correlation is still significant.

Experimental demonstration of the correlation and agreement with the results of the
Bayesian formalism would prove the validity of this formalism and therefore confirm its
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Fig. 2. The normalized average result 6B of the second measurement for several selected results

QA of the first measurement, as a function of the time r between measurements. Panels (a)-(b)
are for strong coupling and panels (c)-(d) for moderate coupling between the qubit and detectors.

other predictions. In particular, it would open the way to the qubit purification using
continuous quantum feedback control.
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