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Abstract. The conductance of a quantum sphere with two one-dimensional wires attached to
it is investigated. An explicit form for the conductance as a function of the chemical potential is
found from the first principles. The form and positions of the resonance maxima on the plot of the
conductance are studied.

Introduction

The aim of this paper is the theoretical study of the ballistic electron transport of a nanode-
vice consisting of a sphere and two wires attached to the sphere. We consider an idealized
model in which the wires are taken to be one-dimensional. This crucial simplification is
based on the possibility to describe the electron motion in nanowires only by means of lon-
gitudinal part of wave functions. To join the wave functions in the wires with those in the
sphere we use boundary conditions at points of gluing the wires to the sphere. These bound-
ary conditions are similar to those in the zero-range potential theory and lead to appearance
of phenomenological parameters like the scattering length for a zero-range potential [ ]. A
useful mathematical formalization of the approach considered here is founded on the Krein
resolvent formula from the self-adjoint operator theory and gives the scattering matrix in
terms of the renormalized Green functions for the free Hamiltonians on the sphere and in
the wires.

1. Boundary conditions and scattering matrix

We consider a wire R;.'” (j = 1,2) as the semi-axis x > 0. The wire Rj’ is attached to
the sphere S (S has the radius R) by gluing the point 0 from Rj’ to a point ¢; from S.
Denote by Hy the electron Hamiltonian on S, which coincides with (2m*R%)~1L2, where
L is the angular momentum operator and m* is the effective mass. A wave function f of
the device consists of three parts: fo, f1, f2, where fyisafunctionon S, and f; (j = 1, 2)
is a function on R;.'”. Let r(q, q") be the geodesic distance between points g and ¢’ on the
sphere S. Since we are going to use boundary conditions of the zero-range potential theory,
we must consider the function fy having the following asymptotics near the points g; [ ]:

fox) =a;(fo)Inr(x,q;) + b;(fo) + o(1), )
where a;(fy) and b;( fo) are complex numbers; they play the role of the boundary values

for the function fy. As to the functions f;, the role of their boundary values are played, as
usual, by f;(0) and f J/ (0). For reasons of space we shall consider here only the boundary
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conditions of the Neumann type; the most general form of these conditions is given by the
expressions

2
bi(fo) = X [Birar(fo) + i fi(0)],

o @)
fi(0) = 1;1 [a@jkar(fo) + vjr fr0)].

Here the parameters o jz, B and yj; forms 2 x 2-matrices A, B, and C, respectively, such

that the 4 x 4-matrix
P B A
T A*Y C

is Hermitian. Let 50((1, q’; E) be the renormalized Green function of Hy, i.e., the function
obtained from the Green function Go(q,q’; E) by extracting the singular term
(m*R? /i) lnr(q g',). Denote by Q¢(E) the Krein Q-matnx [ 1; this 1s a matrix with
the elements QO (E) = Golgj, qi; E),if j # k, and QO (E) = Gg(qj, qri E),if j = k.
Using the explicit form of G we can show that

m*

Q) (E) = QF(E) = ——

[¢ (l +t(E)) - %tg (7t (E)) — In(2R) + CE} E)

where ¥ (x) is the logarithmic derivative of the I'-function, Cf is the Euler constant, and
HE) = Qh) " 'WK2 + 2m*R%E. The non-diagonal elements of Q¢ (E) have the form

m* 1

PEY=0 ) =——5—
Qv (B) =0y (B) = =55 S ()

,P—%-{—I(E) (—cos(ri2/R)), 4
where P, (x) is the Legendre function and r1o = r(g1, g2). The transition amplitudes
S (E) from the channel R;.F to RZ’ at the energy level E and reflection amplitudes S;; (E)
inthe channel R;.'~ forms the scattering matrix on the sphere S(E). Using the Krein resolvent
formula we can find as S(E):

iflz % —1 lhz * -1 -
S:[%k—%C—FA 0oE) B Al [Tk —c a0 - 4] )

(here k = +/2m* E /h is the electron wave vector). Eq. (5) shows that the matrix B is just
a matrix of parameters for a zero-range pesrturbation of Hy at the points ¢;; therefore, to
avoid effects of non-locality we must choose B in a diagonal form: B;; = 8 f;. Itis

A®

known that the diagonal element 8; is expressed in terms of the scattering length on the

zero-range potential at the point ¢; as follows: §; = —m* In (A @ )/ 2. The matrix C has
a similar meaning, namely, C is a matrix of parameters for a zero range perturbation of the
free Hamiltonians in the wires. Thus, we must suppose C to be diagonal with the diagonal
elements y; = —m*ky) /1* where )Ly) is the scattering length for the zero-range potential
at the point 0 in the wire R+ As to the matrix A, it is responsible for the transmission from
the wires to the sphere. Indeed if A = 0, then the transition coefficient |S12 |2 | S21 |2 =0.

Eqgs. (2) show that in the case of j; # O for j # k there are non-trivial boundary conditions
which connect the wire R?” with the point g ; therefore, we must suppose A to be diagonal,
too. Moreover, the matrix S(E) is symmetric only in the case of real elements «j; = «;.
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It is convenient to express these elements in terms of parameters X ; having the dimension
of length: o2 = (m*)?A i/ Ji?. Thus, in our model the scattering on the sphere is described
by means of/ the six real parameters «.j, f3;, y;. Note, that in the case of a two-dimensional
system, the zero-range perturbation vanishes in the limit 8; — oc; Eq. (5) shows that
in this limit S1(E) — 0, as might be expected. We stress that the idealization of the
one-dimensional wire is possible only in the case that the cross-section of the real wire is
much less than the typical sizes of the system. In particular, our model works only in the
case of relatively large distance r12; namely, we shall suppose ry3 is vastly larger than the
Fermi wave length of an electron in the wire. Nevertheless, we can get the proper limit
(|S12(E)| — 1 as ri2 — 0) using more general boundary conditions than those in (2).

2. Results and discussion
For reasons of symmetry we shall suppose y1 = y2 = y and denote )»51) simply by A. In
this case Eq. (5) gives the transition coefficient T12(E) = |S12(E) |2 in the following form:
(1652142 | 032

Ti(E) = ~ = —7
|4x100k? — 2ik(4 — kD) (A2 Q' + 21 0F) — (4 — ikr)2det Q|

(6)

where Q(E) is the dimensionless O-matrix: Q(E) = (h2/m*)(Q(E) — B). Using Eq. (6)
we can find the conductance G as a function of the chemical potential p at temperature 7.
Namely, according to the Landauer—Biittiker formula

22 [ 9
G(u.T) = %/TME) (—8—’2) dE. )
0

where f 1s the Fermi distribution function.
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Fig. 1. Transition coefficient 71, as a function of k4 (k = /2m* E /1) (a) case of a generic position
for wires (r12 = /7 R); (b) case of an antipodal position for wires (rj2 = 7 R).
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In the discussion, we restrict ourselves to the case of 1; = )»50) = ). The quantity T2
as a function of E has a series of sharp splash-like maxima, their positions are determined
by the zeroes of det O(E), ie., by the levels of the zero-range perturbation of Hy with
parameters §;. On the other hand, if r|; # 7 R, then det Q(E) has poles of the second
order at the points of the spectrum of Hy, i.e., at the energy levels E; = R2I(I + 1)/2m* R?
of an electron on the sphere S, and Eq. (7) shows that Ty, (E;) = 0 (see Figure 1(a)). It
follows from the numerical analysis that Ty depends only slightly on the parameters S
and y.

If the points ¢; and ¢ are antipodal (r12 = 7 R), then the behavior of 71y at points E;
changes drastically. Indeed, at E = E; the numerator and the denominator in Eq. (7) have
apole of the same order, hence, T12(E;) does not vanish. Therefore, the oscillation minima
are not positioned on abscissa but they lay on a curve of the form Ty = k(ak2 + bk +¢)!
(Figure 1(b)). In the region / >> 1 the oscillation period Ak is practically constant: Ak =
R~!'. A numerical analysis of the conductivity at finite temperature shows that with a rise
of temperature the peaks are smoothed and their amplitudes are lowered.
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