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Abstract. We develope a theory of magnetophonon resonance (MPR) in quantum wells in a tilted
magnetic field. We explain the existence of two peaks of MPR in its angular dependence that may
be very sharp. A relation between the MPR amplitude in the perpendicular magnetic field and
its 0-dependence in a tilted field is discussed. We come to conclusion that the 0-dependence of
MPR can give valuable information concerning the optic phonon damping and the electron-phonon
interaction in quantum wells.

Magnetophonon resonance (MPR) is the first internal resonance in solids that has been
predicted theoretically and subsequently observed experimentally (see the review paper[ ]).
The resonant condition is met every time when the limiting frequency of an optical phonon
equals the cyclotron frequency of an electron, WoB = eB/mc, times some small integer, Ar.
Since its theoretical prediction and subsequent experimental discovery MPR has become a
powerful tool to investigate the electron spectra in semiconductors. The magnetophonon
resonance in quantum wells has been investigated since the pioneering paper by Tsui et
al.. The most detailed experimental investigation of the phenomenon has been done by
Nicholas with co-workers (see the review paper [ ] and the references therein).

There are two main groups of such experiments. The first group deals with the MPR in
the perpendicular (to the plane of 2DEG) magnetic field. The main features of this case are
(i) the fact that the resonance is determined by the transverse optic frequency wo, (rather than
the longitudinal frequency w,) and (ii) a rather narrow interval of electron concentrations
where the MPR is observable. The second group concerns with the experiments in magnetic
field tilted at an angle 0 to the perpendicular. For small values of 0 the MPR is determined
by w1. For slightly larger values its amplitude sharply goes down within a narrow angular
interval of the order of 100. For even bigger values of 0 there is another maximum, this
time determined by wo [].

In our paper [] we give interpretation of the first group of experiments. Here we offer
interpretation of the second group and show that the angular and concentration dependencies
of the MPR amplitudes are deeply interrelated.

We assume that the well is so narrow that only one electron band of spatial quantization
is filled. The magnetic field B is assumed to be in the (y, z)-plane, the z-axis being
perpendicular to the 2DEG, while the external electric field is oriented along the y-axis.

We choose the following gauge for the vector potential A = (- By cos 0 + Bz sin 0, 0, 0)
and assume a parabolic confining potential mrwoz 2/2 where m is the effective mass. It is
also assumed that hwo0 >> h, kBT (where Q = eB/Imc while T is the temperature). This
assumption permits to consider only the lowest miniband. This means that our problem
differs from that in perpendicular magnetic field by replacement B -- B cos 0.
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Using the method developed by Kubo et al. and applying the method of Ref. one
can get for the conductance averaged over cross section of the sample

cc2 2Nw

1 = 1 ( ) - f df dq fY N(w)
2kBT Jo 2r () 2 (2J) 1 - exp(-hwo/kBT)

x [DR(q, -w) - DA(q, --0)][HR(q, o0; z, z) -- HA(q, o0; z, z)]. (1)

Here DR,A is the full polarization optic phonon propagator while HIR,A is the electron
polarization operator.

H( 2)= , sinh Aa 2a2c

R 2 2c =O_ 0 o-AQcosO+i6 2 •cos0sinha

(2)Here Ig is the modified Bessel function, a = hQ cos O/2kBT, a2 = ch/eB, n, is the 2D

electron concentration. The polarization operator of Eq. (1) differs from H I) by the factor
if (z)ip (z') due to the electron propagation along the z-axis. Here 1 (z) is the wave function
of the lowest level of the transverse quantization.

The zeroth-order phonon propagator (including the Fr6lich electron-phonon interaction)
is

47re 2  02 _ 02
R (, q)((0) = 8 - (3)D")(0 q)--q28((0 + iF)' 0t2 _0)2

where se, is the lattice dielectric susceptibility at wo -> oc while F is the phonon damping.
As in Ref. [ ], we assume that it is determined by the lattice anharmonicity. Further on we
assume that one can neglect the difference between the lattice properties within and outside
the well. Both these assumptions should not affect the qualitative results of the theory.

Eq. (2) shows that the electron-phonon interaction cannot be treated within the per-
turbation theory. The point is that the higher orders of the perturbation theory (without
regard of the electron damping Fe) give powers of an extra factor 1/(ow - A!(0B cos 0 + i6).
Therefore, as is shown in Ref. [ ], the phonon Green function includes a sum of chains
of loop diagrams. Physically this means taking into account the screening of the phonon
polarization potential by the conduction electrons. Thus in 2D case in a resonance the
screening can be very important.

One should observe the following essential point exploited in Ref. []. Both ends of the
chain should be ordinary phonon lines without addition of any Coulomb interaction lines.
This is due to the fact that the electron-electron (e-e) interaction conserves the electron
quasimomentum.

Thus the oscillatory part of orxx near the A!th MPR (without regard of the electron
damping) is given by

AaX = 2nsc2 b2 hAr N(w() sinh(hw(1/2kB T) IM(R (4)
2 kBTB 2 cos2 0 1 -exp(-h(0t/kBT) ImeRo(4)-c o = .A!'Q cos 0 + iF

where
2 f d2q q I a2 q27, ( a2q2cotha

g 2re(2) 2Ig 22cosOsinha exp 2cos0 " (5)
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As Ims has a singularityatwo = wo, Acxr1 exhibitsthe MPR'satArQ cos 0 = 0o1. Physically
this is due to the fact that the e-e interaction without regard of the damping is infinitely
strong in the resonance.

Further on we will treat the case hQ << kBT that corresponds to a most usual experi-
mental situation. Then 2 e2 -kBT

___ ___ cos0. (6)

One can see that the integral (4) Jg is dominated by q ;-, q, = 2m/kBT/h.
In order to explain the sharp angular dependence of the MPR's one should take into

account the electron damping. As a result, for small electron concentrations [ ] (or, for
large values of 0) one can neglect the e-e interaction at the frequencies wo near co, and the
MPR at this phonon frequency disappears. This is why we take into account the electron
damping Fe. The characteristic angle Ot of the sharpest angular dependence of the MPR
maximum can be determined experimentally as a minimum of the derivative of the MPR
amplitude over 0.

We assume that Fe << Q cos 0. The electron Green function in magnetic field has been
investigated by Ando and Uemura for Fe determined by the elastic scattering. They have
shown that the electron Green function has a non-Lorentzian form with the characteristic
width Fe given by F2 = Q cos 0/27r r where r is the relaxation time for B = 0 obtained
by assuming the same scatterers as for finite B.

For the order-of-magnitude estimates it will be sufficient to use the Lorentzian form of
FI(2) (wo, q). Moreover, in the resonance approximation one should retain only the resonant
term of all the series for FI() ((o, q)

FH•(o), q) = -_ (o), q) (7)
Ro -- AQ cos 0 + iFe(

where R•j is the residue at the pole wo = Ar2cos0 - iFe. Calculating Acxr1 one can
evaluate the integral over frequency taking the residues in the poles wo = ArQ cos 0 ± iFe.
This results in replacement of Im sR under the integral by

1 Im sa1 + 2y
A r ( 2 y + ImeA 1)2 + (Reeal)2 (8)

where y = Fe/a; T = 27re 2 /q7Zg(ArQcos0, q) while 8 A is calculated at o =

iVQ cos0 + i(F + Fe). The angle Ot is given by the condition 2 y = 8a1 . As the in-
tegral in (4) is dominated by q = qT, this condition should be fulfilled for q = q7' and has
the form

1 nI -- nsCos O1. (9)
1 + F/ Fe(0t) nl

Here and henceforth we assume that F, Fe << (o1 - Wot << wol while

1 e 2Q21 /2 ot

nl 8ehaBq2T 3/ 2 (Wc - wo) (10)

Eq. (9) establishes a correspondence between the low concentration dependence of the
MPR amplitude for perpendicular B [ ] and its angular dependence in a tilted field B for
a fixed concentration. Indeed, the sharpest dependence of MPR amplitude on ns as well
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as on 0 comes from the resonant factor Eq. (8). In particular, for F/ Fe << 1 the MPR
amplitude is determined by the effective concentration ns cos 0. Thus according to Eq. (9)
the decrease of the MPR amplitude for 0 = 0 when ns goes down and its decrease when 0
goes up are interrelated.

For further enhancement of the angle 0 the resonance at A'Q cos 0 = wt disappears.
As soon as the condition 2 y = eA1 is satisfied for w = NJ + iF + iF, direct application of
the perturbation theory is permissible [ I as the screening ceases to play any role. Then we
have a resonance at A/Q cos 0 = wol. The angle corresponding to the amplitude maximum
will be denoted by 01. Due to the strong dispersion of s (w) the angles 0t and 01 can be
discerned on experiment. Thus the equation 2 y = A 1 for calculation of 01 and 0 has the
same form for frequencies ow and NJ respectively. As a result, we have

SIm 8-l (Wot + i I + ile' 0) (1
cos00 Ime-1 (NJ + iF + iFe,i O)"

The dependence of e- on 0 is due to the 0-dependence of Fe. We find a reasonable
correspondence between the experiment and this theory.

To summarize, we stress that the interpretation of behavior of the MPR in a tilted
magnetic field has been a long-standing problem [ ]. Two types of resonant maxima have
been discovered on experiment. They may be called the w1t- and Wol-resonances as their
positions are determined by the frequencies ow and NJ respectively. We have determined the
angular intervals where both types of resonance exist. We have found that sharp decrease of
the Wot-resonance amplitudes is due to the sharp angular dependence of the screening. The
Wol-resonance is analogous to the 3D MPR as there the screening plays no role. Therefore
this resonance is suitable for investigation of the electron spectrum in the quantum wells.
We wish to emphasize that its experimental investigation in the perpendicular magnetic
field should be very difficult as it would demand very low electron concentrations [ ]. For
bigger electron concentrations one can expect an enhancement of the MPR amplitudes for
large values of 0.
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