UNCLASSIFIED

Defense Technical Information Center Compilation Part Notice

ADP013154

TITLE: Epitaxial Stabilization of a-PbO2 Structure in MnF2 Layers on Si and GaP

DISTRIBUTION: Approved for public release, distribution unlimited Availability: Hard copy only.

This paper is part of the following report:

TITLE: Nanostructures: Physics and Technology International Symposium [9th], St. Petersburg, Russia, June 18-22, 2001 Proceedings

To order the complete compilation report, use: ADA408025

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report: ADP013147 thru ADP013308

UNCLASSIFIED

Epitaxial stabilization of a-PbO₂ structure in MnF₂ layers on Si and GaP

A. G. Banshchikov, O. V. Anisimov, N. F. Kartenko, M. M. Moisseeva,
N. S. Sokolov and V. P. Ulin
Ioffe Physico-Technical Institute, St Petersburg, Russia

1. Introduction

In recent years, the search for new materials for magnetic storage systems has motivated a number of studies on magnetic multilayers. This interest has been stimulated by the discovery of a giant magnetoresistance effect [1], followed by the design of spin valves [2, 3] with antiferromagnetic films playing an important role. It is well known that manganese fluoride (MnF₂) is a classical antiferromagnetic material, whose magnetic and optical properties are well understood. It was also established that it undergoes polymorphic transitions between the stable rutile-type phase in normal conditions and metastable phases having fluorite or α -PbO₂ structures at high pressures and temperatures [4, 5]. Studies of physical properties of these metastable phases are attractive from both academic and applied points of view. While earlier studies concentrated on bulk polycrystalline systems, our efforts have been focused on MnF₂ thin films. In this connection, it is noteworthy that we have demonstrated the growth of ultrathin MnF₂ layers with the inherited cubic structure of fluorite (CaF₂) buffer on a silicon substrate [6]. In this work, we studied MBE growth and structural properties of relatively thick manganese fluoride layers on different heteroepitaxial substrates.

2. Experimental

Manganese fluoride layers were grown on Si(111), Si(001) and GaP(001) in a custom MBE system. CaF_2 or CdF_2 buffer layers were deposited before the MnF₂ growth. At high growth temperatures [7], we used CaF_2 layers to prevent a chemical interaction between MnF_2 and a Si substrate. As was found for GaP(001) substrates, CdF₂ provided the growth of large surface areas of atomic scale smooth. After standard chemical treatment [8], the silicon substrates were loaded into the growth chamber and cleaned thermally at 1250°C in an ultrahigh vacuum. This procedure produces atomically clean Si(111) surfaces with the 7×7 superstructure. The GaP(001) substrates were polished by a Br₂-isobutyl alcohol solution and washed in chloroform and acetone. Before the epitaxy, the substrates were dipped in a HF solution and fixed on Si platelets with InGa eutectic. The crystalline quality of the substrates and the growth of the buffer layers and MnF2 films were monitored in situ by reflection high-energy electron diffraction (RHEED) at electron energy of 15 keV. We used a recrystallization annealing (RA) in the $550-700^{\circ}$ C range to improve the MnF₂ film quality of some epitaxial structures grown at lower temperatures. The MnF_2 films were covered with a few CaF2 monolayers in order to protect the grown structures from ambient humidity. X-ray diffraction measurements were carried out on a conventional DRON system with CuK_{α} (Ni-filter) radiation. The $\theta - 2\theta$ curves were measured in symmetrical Bragg geometry in the 2θ (6–126°) range. Side reflections were measured in a manual regime. The surface morphology measurements have been carried out in the tapping mode using a P4-SPM-MDT atomic force microscope manufactured by NT-MDT (Zelenograd, Russia).

3. Results and discussion

It was found in our previous study [9] that the surface of thick MnF_2 films grown on $CaF_2/Si(111)$ at 400°C was relatively rough. Weak and diffused X-ray diffraction peaks prevent the identification of the film structure. In this work, we explored a low-temperature growth followed by recrystallization annealing.

The inset in Fig. 1(a) shows the RHEED pattern of a 30 nm MnF₂ film grown at 100°C and annealed at 550°C. Well-pronounced streaks indicate the single crystallinity of the film and relatively smooth surface. The AFM topography (Fig. 1(a)) demonstrates less than 10 nm of height difference on the $1 \times 1 \mu m^2$ square surface. There are irregular shape grains with an average size of about 100 nm. In the AFM and RHEED patterns (Fig. 1(b)), the surface roughening was observed during the further 400°C film growth on the RA surface. One can see that the height difference increases up to 60 nm with the total MnF₂ film thickness of about 100 nm. To reduce the roughness, the film growth time was divided into several stages in such a way that the growth of each 30 nm MnF₂ film at 100°C was followed by RA (at 550°C for 3 seconds). This procedure enabled growing 120–350 nm thick MnF₂ single-crystal films with a relatively smooth surface (Fig. 1(c)).

The X-ray diffraction measurements of the $\theta - 2\theta$ curves have shown the first- and second-order film peaks corresponding to d = 0.309 nm interplanar spacing near the intense 111 and 222 Si(111) substrate peaks. To specify the film structure, we additionally measured 19 side reflections, which unambiguously indicated that the film had 6 domains with the α -PbO₂ structure [10]. According to [11], MnF₂ polycrystals with a metastable α -PbO₂ phase were revealed under normal conditions just after the high-pressure drop. Following the MnF₂ film growth with RA, the MnF₂(111) planes of each domain were parallel to the Si(111) substrate, though in some cases they were rotated by $\approx 1^{\circ}$ off the substrate surface, whose misorientation relative to the exact crystallographic plane did not exceed 15–20 arcmin. It was found that the lattice constants of the orthorhombic (α -PbO₂) unit in a MnF₂ layer were a = 0.4953 nm, b = 0.5798 nm and c = 0.5362 nm. They are very close to the lattice constants (a = 0.4960 nm, b = 0.5800 nm, c = 0.5359 nm) of polycrystalline MnF₂ measured in [5]. The structural α –PbO₂ type, like the rutile one, possesses the octahedral coordination of each Mn ion with fluorine, though the octahedron positions in the rutile and α – PbO₂ structures are quite different. The octahedra are arranged into linear chains in the former case and into zigzag chain pattern in the latter chain [12]. The X-ray data analysis shows the following epitaxial relations: $(111)_{Si} \parallel (111)_{MnF_2}$, and $[2\overline{11}]_{Si} || [2\overline{11}]_{MnF_2}$. Since conjugation of the low-symmetry (α -PbO₂) MnF₂ phase with

Fig. 1. AFM images and RHEED patterns (insets) of MnF_2 layers grown on Si(111) with CaF_2 buffer layer: (a) 30 nm, 20°C, RA at 550°C; (b) 85 nm, 400°C; (c) 25 nm, RA at 550°C.

Fig. 2. AFM images and RHEED patterns (insets) of (a) 100 ml CdF₂ buffer layer on GaP(001); (b) 100 ml MnF₂, 300°C.

Fig. 3. AFM images and RHEED patterns (insets) of (a) 180 nm CaF₂ buffer layer on Si(001); (b) 100 nm MnF₂, 300°C, RA at 580°C.

the Si substrate takes place along high (3 m) symmetry (111) surface, it is not unexpected that the layer is formed by 120° -domains observed in the topographic images of the surface (Fig. 1(b)).

The growth of MnF₂ epitaxial films has also been studied on Si(001) and GaP(001) substrates. A smooth 100 monolayer epitaxial layer was obtained by room temperature MnF₂ deposition on a thin CaF₂ wetting layer on Si(001) [13], followed by a rapid thermal annealing at 700°C. Three well-pronounced diffraction orders of MnF₂(010) (b = 0.580 nm) could be seen in the $\theta - 2\theta$ curve taken from this structure in the symmetrical geometry. These peaks correspond to 020, 040 and 060 reflections in the α -PbO₂ structure. Thus, the [010] direction in this film was parallel to the Si[001]. A similar epitaxial relation was found for the film grown on GaP(001) with a CdF₂ buffer layer having a large area of atomically flat (001) surface (Fig. 2(a)).

A RHEED pattern taken from the MnF₂ film grown on such a buffer is shown in the inset to Fig. 2(b). X-ray diffractometry shows that the film was mainly monocrystalline with interlayer spacing d = 0.291 nm. One could see (Fig. 2(b)) well-pronounced orthogonal elongated crystallites on the film, which was not unexpected for orthorhombic structure of the layer. The growth of MnF₂ layers on a relatively thick CaF₂ buffer layer on Si(001) at 300–600°C provided a facetted surface. Bright spots at intersections of inclined streaks in the RHEED pattern (inset to Fig. 3(a))were due to the fluorite islands with {111} facets (Fig. 3(a)). After the beginning of the MnF₂ growth, diffused spots appeared. Further growth resulted in their elongation normal to the surface, indicating the surface flattening. Annealing of the grown structure at 580°C improved its crystallinity and planarity (Fig. 3(b)). The X-ray diffraction $\theta - 2\theta$ curve taken from this film showed only 200 and 400 reflections of the orthorhombic structure. This indicates that the [100] film direction was aligned with the [001] substrate direction.

4. Summary

Epitaxial MnF₂ films as thick as 350 nm have been grown on Si and GaP substrates. X-ray diffractometry revealed that the MnF₂ films have the α -PbO₂-type orthorhombic structure with the lattice parameters a = 0.4953 nm, b = 0.5798 nm, c = 0.5362 nm. It was found that the films grown on Si(111) have $(111)_{Si} \parallel [211]_{MnF_2}$ and $[211]_{Si} \parallel [211]_{MnF_2}$ orientations. These epitaxial relations agree with three crystallite orientations observed by AFM. Manganese fluoride films grown on Si(001) had the same orthorhombic structure, however $[010]_{MnF_2}$ or $[100]_{MnF_2}$ were directed along the surface normal, depending on the surface morphology of the buffer layer. Optical and magnetic measurements of the MnF₂ layers are underway.

Acknowledgements

This work was supported by grants of Russian Ministry of Sciences (No 99-2043) and Swiss National Science foundation (No 7SUPJ062359).

References

- [1] M. N. Baibich, J. M. Broto, et al, Phys. Rev. Lett. 61, 2472 (1988).
- [2] B. Dieny, V. S. Speriosu, S. S. P. Parkin, et al, Phys. Rev. B43, 1297 (1991).
- [3] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mat. 192, 203 (1999).
- [4] L. M. Lityagina, M. F. Kachan, S. S. Kabalkina and L. F. Vereshchagin, Dokl. Chem. Proc. Acad. Sci. USSR 214/219, 424 (1974).
- [5] L. M. Azzaria and Frank Dachille, J. Phys. Chem. 65, 889 (1961).
- [6] N. L. Yakovlev, A. G. Banshchikov, M. M. Moisseeva, N. S. Sokolov, J. L. Beeby and P. A. Maksym, *Surf. & Interf. Analysis* 28, 264 (1999).
- [7] O. V. Anisimov, A. G. Banshchikov, A. V. Krupin, M. M. Moisseeva, N. S. Sokolov, et al., Probe Microscopy-2000 Niznii Novgorod 70 (2000).
- [8] A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).
- [9] O. V. Anisimov, A. G. Banshchikov, A. V. Krupin, M. M. Moisseeva, N. S. Sokolov, V. P. Ulin and N. L. Yakovlev, *Thin Solid Films* 367, 199 (2000).
- [10] A. I. Zaslavskii, Yu. D. Kondrashov and S. S. Tolkachev, Dokl. Akad. Nauk SSSR 75, 559 (1950).
- [11] L. F. Vereshchagin, S. S. Kabalkina and A. A. Kotilevets, Sov. Phys.-JETP 22, (1965).
- [12] S. S. Kabalkina and S. V. Popova, Sov. Phys.-Dokl. 8, 1141 (1963).
- [13] N. S. Sokolov and S. M. Suturin, Appl. Surf. Sci. (2001).